KLUEDO RSS FeedKLUEDO Dokumente/documents
https://kluedo.ub.uni-kl.de/index/index/
Mon, 26 May 2003 10:49:20 +0200Mon, 26 May 2003 10:49:20 +0200Smoothing Splines in Multiscale Geopotential Determination from Satellite Data
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1396
SST (satellite-to-satellite tracking) and SGG (satellite gravity gradiometry) provide data that allows the determination of the first and second order radial derivative of the earth's gravitational potential on the satellite orbit, respectively. The modeling of the gravitational potential from such data is an exponentially ill-posed problem that demands regularization. In this paper, we present the numerical studies of an approach, investigated in [24] and [25], that reconstructs the potential with spline smoothing. In this case, spline smoothing is not just an approximation procedure but it solves the underlying compact operator equation of the SST-problem and the SGG-problem. The numerical studies in this paper are performed for a simplified geometrical scenario with simulated data, but the approach is designed to handle first or second order radial derivative data on a real satellite orbit.Kerstin Hesse; Martin Guttingpreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1396Mon, 26 May 2003 10:49:20 +0200On the Multiscale Solution of Satellite Problems by Use of Locally Supported Kernel Functions Corresponding to Equidistributed Data on Spherical Orbits
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1117
Being interested in (rotation-)invariant pseudodi erential equations of satellite problems corresponding to spherical orbits, we are reasonably led to generating kernels that depend only on the spherical distance, i. e. in the language of modern constructive approximation form spherical radial basis functions. In this paper approximate identities generated by such (rotation-invariant) kernels which are additionally locally supported are investigated in detail from theoretical as well as numerical point of view. So-called spherical di erence wavelets are introduced. The wavelet transforms are evaluated by the use of a numerical integration rule, that is based on Weyl's law of equidistribution. This approximate formula is constructed such that it can cope with millions of (satellite) data. The approximation error is estimated on the orbital sphere. Finally, we apply the developed theory to the problems of satellite-to-satellite tracking (SST) and satellite gravity gradiometry (SGG).Willi Freeden; Kerstin Hessepreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1117Mon, 21 Aug 2000 00:00:00 +0200