KLUEDO RSS FeedKLUEDO Dokumente/documents
https://kluedo.ub.uni-kl.de/index/index/
Wed, 20 May 2009 14:51:18 +0200Wed, 20 May 2009 14:51:18 +0200Discrete Lagrangian mechanics and geometrically exact Cosserat rods
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/2093
Inspired by Kirchhoff’s kinetic analogy, the special Cosserat theory of rods is formulatedin the language of Lagrangian mechanics. A static rod corresponds to an abstract Lagrangian system where the energy density takes the role of the Lagrangian function. The equilibrium equations are derived from a variational principle. Noether’s theorem relates their first integrals to frame-indifference, isotropy and uniformity. These properties can be formulated in terms of Lie group symmetries. The rotational degrees of freedom, present in the geometrically exact beam theory, are represented in terms of orthonormal director triads. To reduce the number of unknowns, Lagrange multipliers associated with the orthonormality constraints are eliminated using null-space matrices. This is done both in the continuous and in the discrete setting. The discrete equilibrium equations are used to compute discrete rod configurations, where different types of boundary conditions can be handled.P. Jung; S. Leyendecker; J. Linn; M. Ortizreporthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/2093Wed, 20 May 2009 14:51:18 +0200Multibody dynamics simulation of geometrically exact Cosserat rods
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/2092
In this paper, we present a viscoelastic rod model that is suitable for fast and sufficiently accurate dynamic simulations. It is based on Cosserat’s geometrically exact theory of rods and is able to represent extension, shearing (’stiff ’ dof), bending and torsion (’soft’ dof). For inner dissipation, a consistent damping potential from Antman is chosen. Our discrete model is based on a finite difference discretisation on a staggered grid. The right-hand side function f and the Jacobian ∂f/∂(q, v, t) of the dynamical system q˙ = v, v˙ = f(q, v, t) – after index reduction from three to zero – is free of higher algebraic (e.g. root) or transcendent (e.g. trigonometric or exponential) functions and is therefore cheap to evaluate. For the time integration of the system, we use well established stiff solvers like RADAU5 or DASPK. As our model yields computation times within milliseconds, it is suitable for interactivemanipulation in ’virtual reality’ applications. In contrast to fast common VR rod models, our model reflects the structural mechanics solutions sufficiently correct, as comparison with ABAQUS finite element results shows.H. Lang; J. Linn; M. Arnoldreporthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/2092Wed, 20 May 2009 14:51:05 +0200