KLUEDO RSS FeedKLUEDO Dokumente/documents
https://kluedo.ub.uni-kl.de/index/index/
Mon, 03 Apr 2000 00:00:00 +0200Mon, 03 Apr 2000 00:00:00 +0200Domain Decomposition: Linking Kinetic and Aerodynamic Descriptions
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/729
We discuss how kinetic and aerodynamic descriptions of a gas can be matched at some prescribed boundary. The boundary (matching) conditions arise from requirement that the relevant moments (p,u,...) of the particle density function be continuous at the boundary, and from the requirement that the closure relation, by which the aerodynamic equations (holding on one side of the boundary) arise from the kinetic equation (holding on the other side), be satisfied at the boundary. We do a case study involving the Knudsen gas equation on one side and a system involving the Burgers equation on the other side in section 2, and a discussion for the coupling of the full Boltzmann equation with the compressible Navier-Stokes equations in section 3.Reinhard Illner; Helmut Neunzertpreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/729Mon, 03 Apr 2000 00:00:00 +0200Modelling and Numerical Simulation of Collisions
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/735
In these lectures we will mainly treat a billard game. Our particles will be hard spheres. Not always: We will also touch cases, where particles have interior energies due to rotation or vibration, which they exchange in a collision, and we will talk about chemical reactions happening during a collision. But many essential aspects occur already in the billard case which will be therefore paradigmatic. I do not know enough about semiconductors to handle collisions there - the Boltzmann case is certainly different but may give some idea even for the other cases.Helmut Neunzertpreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/735Fri, 01 Jan 1993 00:00:00 +0100