KLUEDO RSS FeedKLUEDO Dokumente/documents
https://kluedo.ub.uni-kl.de/index/index/
Fri, 02 Dec 2005 23:40:42 +0100Fri, 02 Dec 2005 23:40:42 +0100Easy Differentiation and Integration of Homogeneous Harmonic Polynomials
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1688
We will give explicit differentiation and integration rules for homogeneous harmonic polynomial polynomials and spherical harmonics in IR^3 with respect to the following differential operators: partial_1, partial_2, partial_3, x_3 partial_2 - x_2 partial_3, x_3 partial_1 - x_1 partial_3, x_2 partial_1 - x_1 partial_2 and x_1 partial_1 + x_2 partial_2 + x_3 partial_3. A numerical application to the problem of determining the geopotential field will be shown.Frank Bauerpreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1688Fri, 02 Dec 2005 23:40:42 +0100Split Operators for Oblique Boundary Value Problems
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1627
In the field of gravity determination a special kind of boundary value problem respectively ill-posed satellite problem occurs; the data and hence side condition of our PDE are oblique second order derivatives of the gravitational potential. In mathematical terms this means that our gravitational potential \(v\) fulfills \(\Delta v = 0\) in the exterior space of the Earth and \(\mathscr D v = f\) on the discrete data location which is on the Earth's surface for terrestrial measurements and on a satellite track in the exterior for spaceborne measurement campaigns. \(\mathscr D\) is a first order derivative for methods like geometric astronomic levelling and satellite-to-satellite tracking (e.g. CHAMP); it is a second order derivative for other methods like terrestrial gradiometry and satellite gravity gradiometry (e.g. GOCE). Classically one can handle first order side conditions which are not tangential to the surface and second derivatives pointing in the radial direction employing integral and pseudo differential equation methods. We will present a different approach: We classify all first and purely second order operators \(\mathscr D\) which fulfill \(\Delta \mathscr D v = 0\) if \(\Delta v = 0\). This allows us to solve the problem with oblique side conditions as if we had ordinary i.e. non-derived side conditions. The only additional work which has to be done is an inversion of \(\mathscr D\), i.e. integration.Frank Bauerpreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1627Tue, 22 Mar 2005 13:47:08 +0100