KLUEDO RSS FeedKLUEDO Dokumente/documents
https://kluedo.ub.uni-kl.de/index/index/
Tue, 10 Feb 2004 10:12:45 +0100Tue, 10 Feb 2004 10:12:45 +0100Multigrid – adaptive local refinement solver for incompressible flows
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1511
A non-linear multigrid solver for incompressible Navier-Stokes equations, exploiting finite volume discretization of the equations, is extended by adaptive local refinement. The multigrid is the outer iterative cycle, while the SIMPLE algorithm is used as a smoothing procedure. Error indicators are used to define the refinement subdomain. A special implementation approach is used, which allows to perform unstructured local refinement in conjunction with the finite volume discretization. The multigrid - adaptive local refinement algorithm is tested on 2D Poisson equation and further is applied to a lid-driven flows in a cavity (2D and 3D case), comparing the results with bench-mark data. The software design principles of the solver are also discussed.O. Iliev; D. Stoyanovreporthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1511Tue, 10 Feb 2004 10:12:45 +0100On a Multigrid Adaptive Refinement Solver for Saturated Non-Newtonian Flow in Porous Media
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1509
On a Multigrid Adaptive Refinement Solver for Saturated Non-Newtonian Flow in Porous Media A multigrid adaptive refinement algorithm for non-Newtonian flow in porous media is presented. The saturated flow of a non-Newtonian fluid is described by the continuity equation and the generalized Darcy law. The resulting second order nonlinear elliptic equation is discretized by a finite volume method on a cell-centered grid. A nonlinear full-multigrid, full-approximation-storage algorithm is implemented. As a smoother, a single grid solver based on Picard linearization and Gauss-Seidel relaxation is used. Further, a local refinement multigrid algorithm on a composite grid is developed. A residual based error indicator is used in the adaptive refinement criterion. A special implementation approach is used, which allows us to perform unstructured local refinement in conjunction with the finite volume discretization. Several results from numerical experiments are presented in order to examine the performance of the solver.W. Dörfler; O. Iliev; D. Stoyanov; D. Vassilevareporthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1509Tue, 10 Feb 2004 10:06:38 +0100