KLUEDO RSS FeedKLUEDO Dokumente/documents
https://kluedo.ub.uni-kl.de/index/index/
Thu, 31 May 2001 00:00:00 +0200Thu, 31 May 2001 00:00:00 +0200Semiclassical Approximations in Phase Space with Coherent States
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1285
We present a complete derivation of the semiclassical limit of the coherent state propagator in one dimension, starting from path integrals in phase space. We show that the arbitrariness in the path integral representation, which follows from the overcompleteness of the coherent states, results in many different semiclassical limits. We explicitly derive two possible semiclassical formulae for the propagator, we suggest a third one, and we discuss their relationships. We also derive an initial value representation for the semiclassical propagator, based on an initial gaussian wavepacket. It turns out to be related to, but different from, Heller's thawed gaussian approximation. It is very different from the Herman - Kluk formula, which is not a correct semiclassical limit. We point out errors in two derivations of the latter. Finally we show how the semiclassical coherent state propagators lead to WKB-type quantization rules and to approximations for the Husimi distributions of stationary states.Michel Baranger; Marcus A. M. de Aguiar; Frank Keck; Hans-Jürgen Korsch; Bernd Schellhaaßpreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1285Thu, 31 May 2001 00:00:00 +0200Semiclassical analysis of tunneling splittings in periodically driven quantum systems
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/872
For periodically driven systems, quantum tunneling between classical resonant stability islands in phase space separated by invariant KAM curves or chaotic regions manifests itself by oscillatory motion of wave packets centered on such an island, by multiplet splittings of the quasienergy spectrum, and by phase space localisation of the quasienergy states on symmetry related ,ux tubes. Qualitatively di,erent types of classical resonant island formation | due to discrete symmetries of the system | and their quantum implications are analysed by a (uniform) semiclassical theory. The results are illustrated by a numerical study of a driven non-harmonic oscillator.Hans Jürgen Korsch; Bruno Mirbach; Bernd Schellhaaßarticlehttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/872Sat, 02 Sep 2000 00:00:00 +0200