KLUEDO RSS FeedKLUEDO Dokumente/documents
https://kluedo.ub.uni-kl.de/index/index/
Thu, 26 Apr 2007 16:10:59 +0200Thu, 26 Apr 2007 16:10:59 +0200Minimum Cut Bases in Undirected Networks
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1857
Given an undirected, connected network G = (V,E) with weights on the edges, the cut basis problem is asking for a maximal number of linear independent cuts such that the sum of the cut weights is minimized. Surprisingly, this problem has not attained as much attention as its graph theoretic counterpart, the cycle basis problem. We consider two versions of the problem, the unconstrained and the fundamental cut basis problem. For the unconstrained case, where the cuts in the basis can be of an arbitrary kind, the problem can be written as a multiterminal network flow problem and is thus solvable in strongly polynomial time. The complexity of this algorithm improves the complexity of the best algorithms for the cycle basis problem, such that it is preferable for cycle basis problems in planar graphs. In contrast, the fundamental cut basis problem, where all cuts in the basis are obtained by deleting an edge, each, from a spanning tree T is shown to be NP-hard. We present heuristics, integer programming formulations and summarize first experiences with numerical tests.Florentine Bunke; Horst W. Hamacher; Francesco Maffioli; Anne Schwahnpreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1857Thu, 26 Apr 2007 16:10:59 +0200Minimum Fundamental Cut Basis Problem
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1675
Any tree in an undirected graph defines a fundamental cut basis. The minimum fundamental cut basis problem is to find a tree minimizing the weight of the corresponding basis. This problem is NP, in the thesis heuristics, relaxations, and numerical results are presented.Anne Schwahndiplomhttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/1675Wed, 26 Oct 2005 16:08:26 +0200