KLUEDO RSS FeedKLUEDO Dokumente/documents
https://kluedo.ub.uni-kl.de/index/index/
Tue, 27 Sep 2016 12:49:38 +0200Tue, 27 Sep 2016 12:49:38 +0200Integrating Security Concerns into Safety Analysis of Embedded Systems Using Component Fault Trees
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4455
Nowadays, almost every newly developed system contains embedded systems for controlling system functions. An embedded system perceives its environment via sensors, and interacts with it using actuators such as motors. For systems that might damage their environment by faulty behavior usually a safety analysis is performed. Security properties of embedded systems are usually not analyzed at all. New developments in the area of Industry 4.0 and Internet of Things lead to more and more networking of embedded systems. Thereby, new causes for system failures emerge: Vulnerabilities in software and communication components might be exploited by attackers to obtain control over a system. By targeted actions a system may also be brought into a critical state in which it might harm itself or its environment. Examples for such vulnerabilities, and also successful attacks, became known over the last few years.
For this reason, in embedded systems safety as well as security has to be analyzed at least as far as it may cause safety critical failures of system components.
The goal of this thesis is to describe in one model how vulnerabilities from the security point of view might influence the safety of a system. The focus lies on safety analysis of systems, so the safety analysis is extended to encompass security problems that may have an effect on the safety of a system. Component Fault Trees are very well suited to examine causes of a failure and to find failure scenarios composed of combinations of faults. A Component Fault Tree of an analyzed system is extended by additional Basic Events that may be caused by targeted attacks. Qualitative and quantitative analyses are extended to take the additional security events into account. Thereby, causes of failures that are based on safety as well as security problems may be found. Quantitative or at least semi-quantitative analyses allow to evaluate security measures more detailed, and to justify the need of such.
The approach was applied to several example systems: The safety chain of the off-road robot RAVON, an adaptive cruise control, a smart farming scenario, and a model of a generic infusion pump were analyzed. The result of all example analyses was that additional failure causes were found which would not have been detected in traditional Component Fault Trees. In the analyses also failure scenarios were found that are caused solely by attacks, and that are not depending on failures of system components. These are especially critical scenarios which should not happen in this way, as they are not found in a classical safety analysis. Thus the approach shows its additional benefit to a safety analysis which is achieved by the application of established techniques with only little additional effort.Max Steinerdoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4455Tue, 27 Sep 2016 12:49:38 +0200On a coupled SDE-PDE system modeling acid-mediated tumor invasion
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4451
We propose and analyze a multiscale model for acid-mediated tumor invasion
accounting for stochastic effects on the subcellular level.
The setting involves a PDE of reaction-diffusion-taxis type describing the evolution of the tumor cell density,
the movement being directed towards pH gradients in the local microenvironment,
which is coupled to a PDE-SDE system characterizing the
dynamics of extracellular and intracellular proton concentrations, respectively.
The global well-posedness of the model is shown and
numerical simulations are performed in order to illustrate the solution behavior.Sandesh Athni Hiremath; Anna Zhigun; Stefanie Sonner; Christina Surulescupreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4451Thu, 22 Sep 2016 08:23:05 +0200Treatment of Reissner–Mindlin shells with kinks without the need for drilling rotation stabilization in an isogeometric framework
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4448
This work presents a framework for the computation of complex geometries containing intersections of multiple patches with Reissner-Mindlin shell elements. The main objective is to provide an isogeometric finite element implementation which neither requires drilling rotation stabilization, nor user interaction to quantify the number of rotational degrees of freedom for every node. For this purpose, the following set of methods is presented. Control points with corresponding physical location are assigned to one common node for the finite element solution. A nodal basis system in every control point is defined, which ensures an exact interpolation of the director vector throughout the whole domain. A distinction criterion for the automatic quantification of rotational degrees of freedom for every node is presented. An isogeometric Reissner-Mindlin shell formulation is enhanced to handle geometries with kinks and allowing for arbitrary intersections of patches. The parametrization of adjacent patches along the interface has to be conforming. The shell formulation is derived from the continuum theory and uses a rotational update scheme for the current director vector. The nonlinear kinematic allows the computation of large deformations and large rotations. Two concepts for the description of rotations are presented. The first one uses an interpolation which is commonly used in standard Lagrange-based shell element formulations. The second scheme uses a more elaborate concept proposed by the authors in prior work, which increases the accuracy for arbitrary curved geometries. Numerical examples show the high accuracy and robustness of both concepts. The applicability of the proposed framework is demonstrated.
Wolfgang Dornisch; Sven Klinkelpreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4448Fri, 16 Sep 2016 12:50:46 +0200Isogeometric Reissner–Mindlin shell analysis with exactly calculated director vectors
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4447
An isogeometric Reissner-Mindlin shell derived from the continuum theory is presented. The geometry is described by NURBS surfaces. The kinematic description of the employed shell theory requires the interpolation of the director vector and of a local basis system. Hence, the definition of nodal basis systems at the control points is necessary for the proposed formulation. The control points are in general not located on the shell reference surface and thus, several choices for the nodal values are possible. The proposed new method uses the higher continuity of the geometrical description to calculate nodal basis system and director vectors which lead to geometrical exact interpolated values thereof. Thus, the initial director vector coincides with the normal vector even for the coarsest mesh. In addition to that a more accurate interpolation of the current director and its variation is proposed. Instead of the interpolation of nodal director vectors the new approach interpolates nodal rotations. Account is taken for the discrepancy between interpolated basis systems and the individual nodal basis systems with an additional transformation. The exact evaluation of the initial director vector along with the interpolation of the nodal rotations lead to a shell formulation which yields precise results even for coarse meshes. The convergence behavior is shown to be correct for k-refinement allowing the use of coarse meshes with high orders of NURBS basis functions. This is potentially advantageous for applications with high numerical effort per integration point. The geometrically nonlinear formulation accounts for large rotations. The consistent tangent matrix is derived. Various standard benchmark examples show the superior accuracy of the presented shell formulation. A new benchmark designed to test the convergence behavior for free form surfaces is presented. Despite the higher numerical effort per integration point the improved accuracy yields considerable savings in computation cost for a predefined error bound.
Wolfgang Dornisch; Sven Klinkel; Bernd Simeonpreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4447Mon, 12 Sep 2016 10:12:58 +0200The weak substitution method – An application of the mortar method for patch coupling in NURBS-based isogeometric analysis
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4436
In this contribution a mortar-type method for the coupling of non-conforming NURBS surface patches is proposed. The connection of non-conforming patches with shared degrees of freedom requires mutual refinement, which propagates throughout the whole patch due to the tensor-product structure of NURBS surfaces. Thus, methods to handle non-conforming meshes are essential in NURBS-based isogeometric analysis. The main objective of this work is to provide a simple and efficient way to couple the individual patches of complex geometrical models without altering the variational formulation. The deformations of the interface control points of adjacent patches are interrelated with a master-slave relation. This relation is established numerically using the weak form of the equality of mutual deformations along the interface. With the help of this relation the interface degrees of freedom of the slave patch can be condensated out of the system. A natural connection of the patches is attained without additional terms in the weak form. The proposed method is also applicable for nonlinear computations without further measures. Linear and geometrical nonlinear examples show the high accuracy and robustness of the new method. A comparison to reference results and to computations with the Lagrange multiplier method is given.Wolfgang Dornisch; Gennaro Vitucci; Sven Klinkelpreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4436Fri, 09 Sep 2016 08:57:48 +0200The Xilinx Zynq: A Modern System on Chip for Software Defined Radios
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4442
Software defined radios can be implemented on general purpose processors (CPUs), e.g. based on a PC. A processor offers high flexibility: It can not only be used to process the data samples, but also to control receiver functions, display a waterfall or run demodulation software. However, processors can only handle signals of limited bandwidth due to their comparatively low processing speed. For signals of high bandwidth the SDR algorithms have to be implemented as custom designed digital circuits on an FPGA chip. An FPGA provides a very high processing speed, but also lacks flexibility and user interfaces. Recently the FPGA manufacturer Xilinx has
introduced a hybrid system on chip called Zynq, that combines both approaches. It features a dual ARM Cortex-A9 processor and an FPGA, that offer the flexibility of a processor with the processing speed of an FPGA on a single chip. The Zynq is therefore very interesting for use in SDRs. In this paper the
application of the Zynq and its evaluation board (Zedboard) will be discussed. As an example, a direct sampling receiver has been implemented on the Zedboard using a high-speed 16 bit ADC with 250 Msps.Stefan Schollarticlehttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4442Wed, 07 Sep 2016 14:45:32 +0200A Phase Field Model for the Evolution of Martensite Microstructures in Metastable Austenites
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4438
This thesis is concerned with a phase field model for martensitic transformations in metastable austenitic steels. Within the phase field approach an order parameter is introduced to indicate whether the present phase is austenite or martensite. The evolving microstructure is described by the evolution of the order parameter, which is assumed to follow the time-dependent Ginzburg-Landau equation. The elastic phase field model is enhanced in two different ways to take further phenomena into account. First, dislocation movement is considered by a crystal plasticity setting. Second, the elastic model for martensitic transformations is combined with a phase field model for fracture. Finite element simulations are used to study the single effects separately which contribute to the microstructure formation.Regina Müllerdoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4438Tue, 06 Sep 2016 17:37:25 +0200Cyanobacterial lichenized fungi and there photobionts in Vietnam
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4437
The biodiversity of the cyanobacterial lichen flora of Vietnam is chronically understudied. Previous studies often neglected the lichens that inhabit lowlands especially outcrops and sand dunes that are common habitats in Vietnam.
A cyanolichen collection was gathered from lowlands of central and southern Vietnam to study their diversity and distribution. At the same time, cultured photobionts from those lichens were used for olyphasic taxonomic approach.
A total of 66 cyanolichens were recorded from lowland regions in central and southern of Vietnam, doubles the number of cyanolichens for Vietnam. 80% of them are new records for Vietnam in which a new species Pyrenopsis melanophthalma and two new unidentified lichinacean taxa were described.
A notably floristic segregation by habitats was indicated in the communities. Saxicolous Lichinales dominated in coastal outcrops that corresponded to 56% of lichen species richness. Lecanoralean cyanolichens and basidiolichens were found in the lowland forests. Precipitation correlated negatively to species richness in this study, indicating a competitive relationship.
Eleven cyanobacterial strains including 8 baeocyte-forming members of the genus Chroococcidiopsis and 3 heterocyte-forming species of the genera Nostoc and Scytonema were successfully isolated from lichens.
Phylogenetic and morphological analyses indicated that Chroococcidiopsis was the unique photobiont in Peltula. New mophological characters were found in two Chroococcidiopsis strains: (1) the purple content of cells in one photobiont strain that was isolated from a new lichinacean taxon, and (2) the pseudofilamentous feature by binary division from a strain that was isolated from Porocyphus dimorphus.
With respect to heterocyte-forming cyanobiont, Scytonema was confirmed as the photobiont in the ascolichen Heppia lutosa applying the polyphasic method. The genus Scytonema in the basidiolichens Cyphellostereum was morphologically examinated in lichen thalli. For the first time the intracellular haustorial system of basidiolichen genus Cyphellostereum was noted and investigated.
Phylogenetic analysis of photobiont strains Nostoc from Pannaria tavaresii and Parmeliella brisbanensis indicated that a high selectivity occurred in Parmeliella brisbanensis that were from different regions of the world, while low photobiont selectivity occurred among Pannaria tavaresii samples from different geographical regions.
The herewith presented dissertation is therefore an important contribution to the lichen flora of Vietnam and a significant improvement of the actual knowledge about cyanolichens in this country.Giao Thi Phi Vodoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4437Mon, 05 Sep 2016 16:34:37 +0200Morphology and Morphology Formation of Injection Molded PP-based Nanocomposites
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4433
The mechanical properties of semi-crystalline polymers depend extremely on their
morphology, which is dependent on the crystallization during processing. The aim of
this research is to determine the effect of various nanoparticles on morphology
formation and tensile mechanical properties of polypropylene under conditions
relevant in polymer processing and to contribute ultimately to the understanding of
this influence.
Based on the thermal analyses of samples during fast cooling, it is found that the
presence of nanoparticle enhances the overall crystallization process of PP. The results
suggest that an increase of the nucleation density/rate is a dominant process that
controls the crystallization process of PP in this work, which can help to reduce the
cycle time in the injection process. Moreover, the analysis of melting behaviors
obtained after each undercooling reveals that crystal perfection increases significantly
with the incorporation of TiO2 nanoparticles, while it is not influenced by the SiO2
nanoparticles.
This work also comprises an analysis of the influence of nanoparticles on the
microstructure of injection-molded parts. The results clearly show multi-layers along
the wall thickness. The spherulite size and the degree of crystallinity continuously
decrease from the center to the edge. Generally both the spherulite size and the degree
of crystallinity decrease with higher the SiO2 loading. In contrast, an increase in the
degree of crystallinity with an increasing TiO2 nanoparticle loading was detected.
The tensile properties exhibit a tendency to increase in the tensile strength as the core
is reached. The tensile strength decreases with the addition of nanoparticles, while the
elongation at break of nanoparticle-filled PP decreases from the skin to the core. With
increasing TiO2 loading, the elongation at break decreases.Buncha Suksutdoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4433Thu, 25 Aug 2016 09:19:31 +0200Worst-Case Performance Analysis of Feed-Forward Networks – An Efficient and Accurate Network Calculus
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4432
Distributed systems are omnipresent nowadays and networking them is fundamental for the continuous dissemination and thus availability of data. Provision of data in real-time is one of the most important non-functional aspects that safety-critical networks must guarantee. Formal verification of data communication against worst-case deadline requirements is key to certification of emerging x-by-wire systems. Verification allows aircraft to take off, cars to steer by wire, and safety-critical industrial facilities to operate. Therefore, different methodologies for worst-case modeling and analysis of real-time systems have been established. Among them is deterministic Network Calculus (NC), a versatile technique that is applicable across multiple domains such as packet switching, task scheduling, system on chip, software-defined networking, data center networking and network virtualization. NC is a methodology to derive deterministic bounds on two crucial performance metrics of communication systems:
(a) the end-to-end delay data flows experience and
(b) the buffer space required by a server to queue all incoming data.
NC has already seen application in the industry, for instance, basic results have been used to certify the backbone network of the Airbus A380 aircraft.
The NC methodology for worst-case performance analysis of distributed real-time systems consists of two branches. Both share the NC network model but diverge regarding their respective derivation of performance bounds, i.e., their analysis principle. NC was created as a deterministic system theory for queueing analysis and its operations were later cast in a (min,+)-algebraic framework. This branch is known as algebraic Network Calculus (algNC). While algNC can efficiently compute bounds on delay and backlog, the algebraic manipulations do not allow NC to attain the most accurate bounds achievable for the given network model. These tight performance bounds can only be attained with the other, newly established branch of NC, the optimization-based analysis (optNC). However, the only optNC analysis that can currently derive tight bounds was proven to be computationally infeasible even for the analysis of moderately sized networks other than simple sequences of servers.
This thesis makes various contributions in the area of algNC: accuracy within the existing framework is improved, distributivity of the sensor network calculus analysis is established, and most significantly the algNC is extended with optimization principles. They allow algNC to derive performance bounds that are competitive with optNC. Moreover, the computational efficiency of the new NC approach is improved such that this thesis presents the first NC analysis that is both accurate and computationally feasible at the same time. It allows NC to scale to larger, more complex systems that require formal verification of their real-time capabilities.Steffen Bondorfdoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4432Mon, 22 Aug 2016 13:59:02 +0200Gröbner Bases over Extention Fields of \(\mathbb{Q}\)
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4428
Gröbner bases are one of the most powerful tools in computer algebra and commutative algebra, with applications in algebraic geometry and singularity theory. From the theoretical point of view, these bases can be computed over any field using Buchberger's algorithm. In practice, however, the computational efficiency depends on the arithmetic of the coefficient field.
In this thesis, we consider Gröbner bases computations over two types of coefficient fields. First, consider a simple extension \(K=\mathbb{Q}(\alpha)\) of \(\mathbb{Q}\), where \(\alpha\) is an algebraic number, and let \(f\in \mathbb{Q}[t]\) be the minimal polynomial of \(\alpha\). Second, let \(K'\) be the algebraic function field over \(\mathbb{Q}\) with transcendental parameters \(t_1,\ldots,t_m\), that is, \(K' = \mathbb{Q}(t_1,\ldots,t_m)\). In particular, we present efficient algorithms for computing Gröbner bases over \(K\) and \(K'\). Moreover, we present an efficient method for computing syzygy modules over \(K\).
To compute Gröbner bases over \(K\), starting from the ideas of Noro [35], we proceed by joining \(f\) to the ideal to be considered, adding \(t\) as an extra variable. But instead of avoiding superfluous S-pair reductions by inverting algebraic numbers, we achieve the same goal by applying modular methods as in [2,4,27], that is, by inferring information in characteristic zero from information in characteristic \(p > 0\). For suitable primes \(p\), the minimal polynomial \(f\) is reducible over \(\mathbb{F}_p\). This allows us to apply modular methods once again, on a second level, with respect to the
modular factors of \(f\). The algorithm thus resembles a divide and conquer strategy and
is in particular easily parallelizable. Moreover, using a similar approach, we present an algorithm for computing syzygy modules over \(K\).
On the other hand, to compute Gröbner bases over \(K'\), our new algorithm first specializes the parameters \(t_1,\ldots,t_m\) to reduce the problem from \(K'[x_1,\ldots,x_n]\) to \(\mathbb{Q}[x_1,\ldots,x_n]\). The algorithm then computes a set of Gröbner bases of specialized ideals. From this set of Gröbner bases with coefficients in \(\mathbb{Q}\), it obtains a Gröbner basis of the input ideal using sparse multivariate rational interpolation.
At current state, these algorithms are probabilistic in the sense that, as for other modular Gröbner basis computations, an effective final verification test is only known for homogeneous ideals or for local monomial orderings. The presented timings show that for most examples, our algorithms, which have been implemented in SINGULAR [17], are considerably faster than other known methods.Dereje Kifle Bokudoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4428Wed, 10 Aug 2016 15:34:30 +0200Regionalized Assortment Planning for Multiple Chain Stores: Complexity, Approximability, and Solution Methods
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4424
In retail, assortment planning refers to selecting a subset of products to offer that maximizes profit. Assortments can be planned for a single store or a retailer with multiple chain stores where demand varies between stores. In this paper, we assume that a retailer with a multitude of stores wants to specify her offered assortment. To suit all local preferences, regionalization and store-level assortment optimization are widely used in practice and lead to competitive advantages. When selecting regionalized assortments, a tradeoff between expensive, customized assortments in every store and inexpensive, identical assortments in all stores that neglect demand variation is preferable.
We formulate a stylized model for the regionalized assortment planning problem (APP) with capacity constraints and given demand. In our approach, a 'common assortment' that is supplemented by regionalized products is selected. While products in the common assortment are offered in all stores, products in the local assortments are customized and vary from store to store.
Concerning the computational complexity, we show that the APP is strongly NP-complete. The core of this hardness result lies in the selection of the common assortment. We formulate the APP as an integer program and provide algorithms and methods for obtaining approximate solutions and solving large-scale instances.
Lastly, we perform computational experiments to analyze the benefits of regionalized assortment planning depending on the variation in customer demands between stores.Michael Hopf; Clemens Thielen; Benedikt Kasper; Hans Corstenworkingpaperhttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4424Tue, 09 Aug 2016 09:43:13 +0200Assuring Functional Safety in Open Systems of Systems
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4422
Interconnected, autonomously driving cars shall realize the vision of a zero-accident, low energy mobility in spite of a fast increasing traffic volume. Tightly interconnected medical devices and health care systems shall ensure the health of an aging society. And interconnected virtual power plants based on renewable energy sources shall ensure a clean energy supply in a society that consumes more energy than ever before. Such open systems of systems will play an essential role for economy and society.
Open systems of systems dynamically connect to each other in order to collectively provide a superordinate functionality, which could not be provided by a single system alone. The structure as well as the behavior of an open system of system dynamically emerge at runtime leading to very flexible solutions working under various different environmental conditions. This flexibility and adaptivity of systems of systems are a key for realizing the above mentioned scenarios.
On the other hand, however, this leads to uncertainties since the emerging structure and behavior of a system of system can hardly be anticipated at design time. This impedes the indispensable safety assessment of such systems in safety-critical application domains. Existing safety assurance approaches presume that a system is completely specified and configured prior to a safety assessment. Therefore, they cannot be applied to open systems of systems. In consequence, safety assurance of open systems of systems could easily become a bottleneck impeding or even preventing the success of this promising new generation of embedded systems.
For this reason, this thesis introduces an approach for the safety assurance of open systems of systems. To this end, we shift parts of the safety assurance lifecycle into runtime in order to dynamically assess the safety of the emerging system of system. We use so-called safety models at runtime for enabling systems to assess the safety of an emerging system of system themselves. This leads to a very flexible runtime safety assurance framework.
To this end, this thesis describes the fundamental knowledge on safety assurance and model-driven development, which are the indispensable prerequisites for defining safety models at runtime. Based on these fundamentals, we illustrate how we modularized and formalized conventional safety assurance techniques using model-based representations and analyses. Finally, we explain how we advanced these design time safety models to safety models that can be used by the systems themselves at runtime and how we use these safety models at runtime to create an efficient and flexible runtime safety assurance framework for open systems of systems.Mario Trapphabilitationhttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4422Fri, 05 Aug 2016 13:35:55 +0200Interest Rate Modeling - The Potential Approach and Multi-Curve Potential Models
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4420
This thesis is concerned with interest rate modeling by means of the potential approach. The contribution of this work is twofold. First, by making use of the potential approach and the theory of affine Markov processes, we develop a general class of rational models to the term structure of interest rates which we refer to as "the affine rational potential model". These models feature positive interest rates and analytical pricing formulae for zero-coupon bonds, caps, swaptions, and European currency options. We present some concrete models to illustrate the scope of the affine rational potential model and calibrate a model specification to real-world market data. Second, we develop a general family of "multi-curve potential models" for post-crisis interest rates. Our models feature positive stochastic basis spreads, positive term structures, and analytic pricing formulae for interest rate derivatives. This modeling framework is also flexible enough to accommodate negative interest rates and positive basis spreads.Anh-The Nguyendoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4420Fri, 05 Aug 2016 12:31:23 +0200Plants, herbivores, and their interactions in human-modified landscapes
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4417
Human forest modification is among the largest global drivers of terrestrial degradation
of biodiversity, species interactions, and ecosystem functioning. One of the most
pertinent components, forest fragmentation, has a long history in ecological research
across the globe, particularly in lower latitudes. However, we still know little how
fragmentation shapes temperate ecosystems, irrespective of the ancient status quo of
European deforestation. Furthermore, its interaction with another pivotal component
of European forests, silvicultural management, are practically unexplored. Hence,
answering the question how anthropogenic modification of temperate forests affects
fundamental components of forest ecosystems is essential basic research that has
been neglected thus far. Most basal ecosystem elements are plants and their insect
herbivores, as they form the energetic basis of the tropic pyramid. Furthermore, their
respective biodiversity, functional traits, and the networks of interactions they
establish are key for a multitude of ecosystem functions, not least ecosystem stability.
Hence, the thesis at hand aimed to disentangle this complex system of
interdependencies of human impacts, biodiversity, species traits and inter-species
interactions.
The first step lay in understanding how woody plant assemblages are shaped by
human forest modification. For this purpose, field investigations in 57 plots in the
hyperfragmented cultural landscape of the Northern Palatinate highlands (SW
Germany) were conducted, censusing > 4,000 tree/shrub individuals from 34 species.
Use of novel, integrative indices for different types of land-use allowed an accurate
quantification of biotic responses. Intriguingly, woody tree/shrub communities reacted
strikingly positive to forest fragmentation, with increases in alpha and beta diversity,
as well as proliferation of heat/drought/light adapted pioneer species. Contrarily,
managed interior forests were homogenized/constrained in biodiversity, with
dominance of shade/cold adapted commercial tree species. Comparisons with recently
unmanaged stands (> 40 a) revealed first indications for nascent conversion to oldgrowth
conditions, with larger variability in light conditions and subsequent
community composition. Reactions to microclimatic conditions, the relationship
between associated species traits and the corresponding species pool, as well as
facilitative/constraining effects by foresters were discussed as underlying mechanisms.
Reactions of herbivore assemblages to forest fragmentation and the subsequent
changes in host plant communities were assessed by comprehensive sampling of >
1,000 live herbivores from 134 species in the forest understory. Diversity was –
similarly to plant communities - higher in fragmentation affected habitats, particularly
in edges of continuous control forests. Furthermore, average trophic specialization
showed an identical pattern. Mechanistically, benefits from microclimatic conditions,
host availability, as well as pronounced niche differentiation are deemed responsible.
While communities were heterogeneous, with no segregation across habitats, (smallforest fragments, edges, and interior of control forests), vegetation diversity, herbivore
diversity, as well as trophic specialization were identified to shape community
composition. This probably reflected a gradient from generalistic/species poor vs.
specialist/species rich herbivore assemblages.
Insect studies conducted in forest systems are doomed to incompleteness
without considering ‘the last biological frontier’, the tree canopies. To access their
biodiversity, relationship to edge effects, and their conservational value, the
arboricolous arthropod fauna of 24 beech (Fagus sylvatica) canopies was sampled via
insecticidal knockdown (‘fogging’). This resulted in an exhaustive collection of > 46,000
specimens from 24 major taxonomic/functional groups. Abundance distributions were
markedly negative exponential, indicating high abundance variability in tree crowns.
Individuals of six pertinent orders were identified to species level, returning > 3,100
individuals from 175 species and 52 families. This high diversity did marginally differ
across habitats, with slightly higher species richness in edge canopies. However,
communities in edge crowns were noticeably more heterogeneous than those in the
forest interior, possibly due to higher variability in environmental edge conditions. In
total, 49 species with protective value were identified, of which only one showed
habitat preferences (for near-natural interior forests). Among them, six species (all
beetles, Coleoptera) were classified as ‘priority species’ for conservation efforts. Hence,
beech canopies of the Northern Palatinate highlands can be considered strongholds of
insect biodiversity, incorporating many species of particular protective value.
The intricacy of plant-herbivore interaction networks and their relationship to
forest fragmentation is largely unexplored, particularly in Central Europe. Illumination
of this matter is all the more important, as ecological networks are highly relevant for
ecosystem stability, particularly in the face of additional anthropogenic disturbances,
such as climate change. Hence, plant-herbivore interaction networks (PHNs) were
constructed from woody plants and their associated herbivores, sampled alive in the
understory. Herbivory verification was achieved using no-choice-feeding assays, as well
as literature references. In total, networks across small forest fragments, edges, and
the forest interior consisted of 696 interactions. Network complexity and trophic niche
redundancy were compared across habitats using a rarefaction-like resampling
procedure. PHNs in fragmentation affected forest habitats were significantly more
complex, as well as more redundant in their realized niches, despite being composed of
relatively more specialist species. Furthermore, network robustness to climate change
was quantified utilizing four different scenarios for climate change susceptibility of
involved plants. In this procedure, remaining herbivores in the network were measured
upon successive loss of their host plant species. Consistently, PHNs in edges (and to a
smaller degree in small fragments) withstood primary extinction of plant species
longer, making them more robust. This was attributed to the high prevalence of
heat/drought-adapted species, as well as to beneficial effects of network topography
(complexity and redundancy). Consequently, strong correlative relationships were
found between realized niche redundancy and climate change robustness of PHNs.
This was both the first time that biologically realistic extinctions (instead of e.g.random extinctions) were used to measure network robustness, and that topographical
network parameters were identified as potential indicators for network robustness
against climate change.
In synthesis, in the light of global biotic degradation due to human forest
modification, the necessity to differentiate must be claimed. Ecosystems react
differently to anthropogenic disturbances, and it seems the particular features present
in Central European forests (ancient deforestation, extensive management, and, most
importantly, high richness in open-forest plant species) cause partly opposed patterns
to other biomes. Lenient microclimates and diverse plant communities facilitate
equally diverse herbivore assemblages, and hence complex and robust networks,
opposed to the forest interior. Therefore, in the reality of extensively used cultural
landscapes, fragmentation affected forest ecosystems, particularly forest edges, can be
perceived as reservoir for biodiversity, and ecosystem functionality. Nevertheless, as
practically all forest habitats considered in this thesis are under human cultivation,
recommendations for ecological enhancement of all forest habitats are discussed.Kevin Bähnerdoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4417Wed, 27 Jul 2016 10:35:07 +0200Interactive Visualizations Supporting Minimal Cut Set Analysis II
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4412
The Context and Its Importance: In safety and reliability analysis, the information generated by Minimal Cut Set (MCS) analysis is large.
The Top Level event (TLE) that is the root of the fault tree (FT) represents a hazardous state of the system being analyzed.
MCS analysis helps in analyzing the fault tree (FT) qualitatively-and quantitatively when accompanied with quantitative measures.
The information shows the bottlenecks in the fault tree design leading to identifying weaknesses of the system being examined.
Safety analysis (containing the MCS analysis) is especially important for critical systems, where harm can be done to the environment or human causing injuries, or even death during the system usage.
Minimal Cut Set (MCS) analysis is performed using computers and generating a lot of information.
This phase is called MCS analysis I in this thesis.
The information is then analyzed by the analysts to determine possible issues and to improve the design of the system regarding its safety as early as possible.
This phase is called MCS analysis II in this thesis.
The goal of my thesis was developing interactive visualizations to support MCS analysis II of one fault tree (FT).
The Methodology: As safety visualization-in this thesis, Minimal Cut Set analysis II visualization-is an emerging field and no complete checklist regarding Minimal Cut Set analysis II requirements and gaps were available from the perspective of visualization and interaction capabilities,
I have conducted multiple studies using different methods with different data sources (i.e., triangulation of methods and data) for determining these requirements and gaps before developing and evaluating visualizations and interactions supporting Minimal Cut Set analysis II.
Thus, the following approach was taken in my thesis:
1- First, a triangulation of mixed methods and data sources was conducted.
2- Then, four novel interactive visualizations and one novel interaction widget were developed.
3- Finally, these interactive visualizations were evaluated both objectively and subjectively (compared to multiple safety tools)
from the point of view of users and developers of the safety tools that perform MCS analysis I with respect to their degree in supporting MCS analysis II and from the point of non-domain people using empirical strategies.
The Spiral tool supports analysts with different visions, i.e., full vision, color deficiency protanopia, deuteranopia, and tritanopia. It supports 100 out of 103 (97%) requirements obtained from the triangulation and it fills 37 out of 39 (95%) gaps. Its usability was rated high (better than their best currently used tools) by the users of the safety and reliability tools (RiskSpectrum, ESSaRel, FaultTree+, and a self-developed tool) and at least similar to the best currently used tools from the point of view of the CAFTA tool developers. Its quality was higher regarding its degree of supporting MCS analysis II compared to the FaultTree+ tool. The time spent for discovering the critical MCSs from a problem size of 540 MCSs (with a worst case of all equal order) was less than a minute while achieving 99.5% accuracy. The scalability of the Spiral visualization was above 4000 MCSs for a comparison task. The Dynamic Slider reduces the interaction movements up to 85.71% of the previous sliders and solves the overlapping thumb issues by the sliders provides the 3D model view of the system being analyzed provides the ability to change the coloring of MCSs according to the color vision of the user provides selecting a BE (i.e., multi-selection of MCSs), thus, can observe the BEs' NoO and provides its quality provides two interaction speeds for panning and zooming in the MCS, BE, and model views provide a MCS, a BE, and a physical tab for supporting the analysis starting by the MCSs, the BEs, or the physical parts. It combines MCS analysis results and the model of an embedded system enabling the analysts to directly relate safety information with the corresponding parts of the system being analyzed and provides an interactive mapping between the textual information of the BEs and MCSs and the parts related to the BEs.
Verifications and Assessments: I have evaluated all visualizations and the interaction widget both objectively and subjectively, and finally evaluated the final Spiral visualization tool also both objectively and subjectively regarding its perceived quality and regarding its degree of supporting MCS analysis II.Yasmin Al-Zokaridoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4412Thu, 07 Jul 2016 10:11:41 +0200The Bootstrap for the Functional Autoregressive Model FAR(1)
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4410
Functional data analysis is a branch of statistics that deals with observations \(X_1,..., X_n\) which are curves. We are interested in particular in time series of dependent curves and, specifically, consider the functional autoregressive process of order one (FAR(1)), which is defined as \(X_{n+1}=\Psi(X_{n})+\epsilon_{n+1}\) with independent innovations \(\epsilon_t\). Estimates \(\hat{\Psi}\) for the autoregressive operator \(\Psi\) have been investigated a lot during the last two decades, and their asymptotic properties are well understood. Particularly difficult and different from scalar- or vector-valued autoregressions are the weak convergence properties which also form the basis of the bootstrap theory.
Although the asymptotics for \(\hat{\Psi}{(X_{n})}\) are still tractable, they are only useful for large enough samples. In applications, however, frequently only small samples of data are available such that an alternative method for approximating the distribution of \(\hat{\Psi}{(X_{n})}\) is welcome. As a motivation, we discuss a real-data example where we investigate a changepoint detection problem for a stimulus response dataset obtained from the animal physiology group at the Technical University of Kaiserslautern.
To get an alternative for asymptotic approximations, we employ the naive or residual-based bootstrap procedure. In this thesis, we prove theoretically and show via simulations that the bootstrap provides asymptotically valid and practically useful approximations of the distributions of certain functions of the data. Such results may be used to calculate approximate confidence bands or critical bounds for tests.
Euna Gesare Nyarigedoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4410Wed, 06 Jul 2016 12:30:55 +0200Integrality of representations of finite groups
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4408
Since the early days of representation theory of finite groups in the 19th century, it was known that complex linear representations of finite groups live over number fields, that is, over finite extensions of the field of rational numbers.
While the related question of integrality of representations was answered negatively by the work of Cliff, Ritter and Weiss as well as by Serre and Feit, it was not known how to decide integrality of a given representation.
In this thesis we show that there exists an algorithm that given a representation of a finite group over a number field decides whether this representation can be made integral.
Moreover, we provide theoretical and numerical evidence for a conjecture, which predicts the existence of splitting fields of irreducible characters with integrality properties.
In the first part, we describe two algorithms for the pseudo-Hermite normal form, which is crucial when handling modules over ring of integers.
Using a newly developed computational model for ideal and element arithmetic in number fields, we show that our pseudo-Hermite normal form algorithms have polynomial running time.
Furthermore, we address a range of algorithmic questions related to orders and lattices over Dedekind domains, including computation of genera, testing local isomorphism, computation of various homomorphism rings and computation of Solomon zeta functions.
In the second part we turn to the integrality of representations of finite groups and show that an important ingredient is a thorough understanding of the reduction of lattices at almost all prime ideals.
By employing class field theory and tools from representation theory we solve this problem and eventually describe an algorithm for testing integrality.
After running the algorithm on a large set of examples we are led to a conjecture on the existence of integral and nonintegral splitting fields of characters.
By extending techniques of Serre we prove the conjecture for characters with rational character field and Schur index two.Tommy Hofmanndoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4408Mon, 04 Jul 2016 16:07:15 +0200Development of nano/micro hybrid susceptor sheet for induction heating applications
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4405
Thermoplastic composite materials are being widely used in the automotive and aerospace industries. Due to the limitations of shape complexity, different components
need to be joined. They can be joined by mechanical fasteners, adhesive bonding or
both. However, these methods have several limitations. Components can be joined
by fusion bonding due to the property of thermoplastics. Thermoplastics can be melted on heating and regain their shape on cooling. This property makes them ideal for
joining through fusion bonding by induction heating. Joining of non-conducting or
non-magnetic thermoplastic composites needs an additional material that can generate heat by induction heating.
Polymers are neither conductive nor electromagnetic so they don’t have inherent potential for inductive heating. A susceptor sheet having conductive materials (e.g. carbon fiber) or magnetic materials (e.g. nickel) can generate heat during induction. The
main issues related with induction heating are non-homogeneous and uncontrolled
heating.
In this work, it was observed that to generate heat with a susceptor sheet depends
on its filler, its concentration, and its dispersion. It also depends on the coil, magnetic
field strength and coupling distance. The combination of different fillers not only increased the heating rate but also changed the heating mechanism. Heating of 40ºC/
sec was achieved with 15wt.-% nickel coated short carbon fibers and 3wt.-% multiwalled carbon nanotubes. However, only nickel coated short carbon fibers (15wt-.%)
attained the heating rate of 24ºC/ sec. In this study, electrical conductivity, thermal
conductivity and magnetic properties testing were also performed. The results also
showed that electrical percolation was achieved around 15wt.-% in fibers and (13-
6)wt.-% with hybrid fillers. Induction heating tests were also performed by making
parallel and perpendicular susceptor sheet as fibers were uni-directionally aligned.
The susceptor sheet was also tested by making perforations.
The susceptor sheet showed homogeneous and fast heating, and can be used for
joining of non-conductive or non-magnetic thermoplastic composites.Muhammad Muddassirdoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4405Thu, 30 Jun 2016 13:47:41 +0200Verification & Performance Measurement for Transport Protocol Parallel Routing of an AUTOSAR Gateway System
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4404
A wide range of methods and techniques have been developed over the years to manage the increasing
complexity of automotive Electrical/Electronic systems. Standardization is an example
of such complexity managing techniques that aims to minimize the costs, avoid compatibility
problems and improve the efficiency of development processes.
A well-known and -practiced standard in automotive industry is AUTOSAR (Automotive
Open System Architecture). AUTOSAR is a common standard among OEMs (Original Equipment
Manufacturer), suppliers and other involved companies. It was developed originally with
the goal of simplifying the overall development and integration process of Electrical/Electronic
artifacts from different functional domains, such as hardware, software, and vehicle communication.
However, the AUTOSAR standard, in its current status, is not able to manage the problems
in some areas of the system development. Validation and optimization process of system configuration
handled in this thesis are examples of such areas, in which the AUTOSAR standard
offers so far no mature solutions.
Generally, systems developed on the basis of AUTOSAR must be configured in a way that all
defined requirements are met. In most cases, the number of configuration parameters and their
possible settings in AUTOSAR systems are large, especially if the developed system is complex
with modules from various knowledge domains. The verification process here can consume a
lot of resources to test all possible combinations of configuration settings, and ideally find the
optimal configuration variant, since the number of test cases can be very high. This problem is
referred to in literature as the combinatorial explosion problem.
Combinatorial testing is an active and promising area of functional testing that offers ideas
to solve the combinatorial explosion problem. Thereby, the focus is to cover the interaction
errors by selecting a sample of system input parameters or configuration settings for test case
generation. However, the industrial acceptance of combinatorial testing is still weak because of
the deficiency of real industrial examples.
This thesis is tempted to fill this gap between the industry and the academy in the area
of combinatorial testing to emphasizes the effectiveness of combinatorial testing in verifying
complex configurable systems.
The particular intention of the thesis is to provide a new applicable approach to combinatorial
testing to fight the combinatorial explosion problem emerged during the verification and
performance measurement of transport protocol parallel routing of an AUTOSAR gateway. The
proposed approach has been validated and evaluated by means of two real industrial examples
of AUTOSAR gateways with multiple communication buses and two different degrees of complexity
to illustrate its applicability.Hassan Mohammaddoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4404Thu, 30 Jun 2016 08:31:11 +0200Centimeter-Level Accuracy Path Tracking Control of Tractors and Actively Steered Implements
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4401
Accurate path tracking control of tractors became a key technology for automation in agriculture. Increasingly sophisticated solutions, however, revealed that accurate path tracking control of implements is at least equally important. Therefore, this work focuses on accurate path tracking control of both tractors and implements. The latter, as a prerequisite for improved control, are equipped with steering actuators like steerable wheels or a steerable drawbar, i.e. the implements are actively steered. This work contributes both new plant models and new control approaches for those kinds of tractor-implement combinations. Plant models comprise dynamic vehicle models accounting for forces and moments causing the vehicle motion as well as simplified kinematic descriptions. All models have been derived in a systematic and automated manner to allow for variants of implements and actuator combinations. Path tracking controller design begins with a comprehensive overview and discussion of existing approaches in related domains. Two new approaches have been proposed combining the systematic setup and tuning of a Linear-Quadratic-Regulator with the simplicity of a static output feedback approximation. The first approach ensures accurate path tracking on slopes and curves by including integral control for a selection of controlled variables. The second approach, instead, ensures this by adding disturbance feedforward control based on side-slip estimation using a non-linear kinematic plant model and an Extended Kalman Filter. For both approaches a feedforward control approach for curved path tracking has been newly derived. In addition, a straightforward extension of control accounting for the implement orientation has been developed. All control approaches have been validated in simulations and experiments carried out with a mid-size tractor and a custom built demonstrator implement. Roland Wernerdoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4401Wed, 22 Jun 2016 11:18:09 +0200Model-based Design of Embedded Systems by Desynchronization
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4399
In this thesis we developed a desynchronization design flow in the goal of easing the de- velopment effort of distributed embedded systems. The starting point of this design flow is a network of synchronous components. By transforming this synchronous network into a dataflow process network (DPN), we ensures important properties that are difficult or theoretically impossible to analyze directly on DPNs are preserved by construction. In particular, both deadlock-freeness and buffer boundedness can be preserved after desyn- chronization. For the correctness of desynchronization, we developed a criteria consisting of two properties: a global property that demands the correctness of the synchronous network, as well as a local property that requires the latency-insensitivity of each local synchronous component. As the global property is also a correctness requirement of synchronous systems in general, we take this property as an assumption of our desyn- chronization. However, the local property is in general not satisfied by all synchronous components, and therefore needs to be verified before desynchronization. In this thesis we developed a novel technique for the verification of the local property that can be carried out very efficiently. Finally we developed a model transformation method that translates a set of synchronous guarded actions – an intermediate format for synchronous systems – to an asynchronous actor description language (CAL). Our theorem ensures that one passed the correctness verification, the generated DPN of asynchronous pro- cesses (or actors) preserves the functional behavior of the original synchronous network. Moreover, by the correctness of the synchronous network, our theorem guarantees that the derived DPN is deadlock-free and can be implemented with only finitely bounded buffers.Yu Baidoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4399Mon, 20 Jun 2016 11:18:55 +0200Monoids as Storage Mechanisms
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4400
Automata theory has given rise to a variety of automata models that consist
of a finite-state control and an infinite-state storage mechanism. The aim
of this work is to provide insights into how the structure of the storage
mechanism influences the expressiveness and the analyzability of the
resulting model. To this end, it presents generalizations of results about
individual storage mechanisms to larger classes. These generalizations
characterize those storage mechanisms for which the given result remains
true and for which it fails.
In order to speak of classes of storage mechanisms, we need an overarching
framework that accommodates each of the concrete storage mechanisms we wish
to address. Such a framework is provided by the model of valence automata,
in which the storage mechanism is represented by a monoid. Since the monoid
serves as a parameter to specifying the storage mechanism, our aim
translates into the question: For which monoids does the given
(automata-theoretic) result hold?
As a first result, we present an algebraic characterization of those monoids
over which valence automata accept only regular languages. In addition, it
turns out that for each monoid, this is the case if and only if valence
grammars, an analogous grammar model, can generate only context-free
languages.
Furthermore, we are concerned with closure properties: We study which
monoids result in a Boolean closed language class. For every language class
that is closed under rational transductions (in particular, those induced by
valence automata), we show: If the class is Boolean closed and contains any
non-regular language, then it already includes the whole arithmetical
hierarchy.
This work also introduces the class of graph monoids, which are defined by
finite graphs. By choosing appropriate graphs, one can realize a number of
prominent storage mechanisms, but also combinations and variants thereof.
Examples are pushdowns, counters, and Turing tapes. We can therefore relate
the structure of the graphs to computational properties of the resulting
storage mechanisms.
In the case of graph monoids, we study (i) the decidability of the emptiness
problem, (ii) which storage mechanisms guarantee semilinear Parikh images,
(iii) when silent transitions (i.e. those that read no input) can be
avoided, and (iv) which storage mechanisms permit the computation of
downward closures.
Georg Zetzschedoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4400Fri, 17 Jun 2016 10:05:27 +0200 Annual Report 2015
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4395
Burkard Hillebrandsperiodicalparthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4395Wed, 08 Jun 2016 15:27:11 +0200 Annual Report 2014
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4394
Burkard Hillebrandsperiodicalparthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4394Wed, 08 Jun 2016 15:21:02 +0200