KLUEDO RSS FeedKLUEDO Dokumente/documents
https://kluedo.ub.uni-kl.de/index/index/
Wed, 18 Nov 2015 08:25:22 +0100Wed, 18 Nov 2015 08:25:22 +0100Performance Analysis in Robust Optimization
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4227
We discuss the problem of evaluating a robust solution.
To this end, we first give a short primer on how to apply robustification approaches to uncertain optimization problems using the assignment problem and the knapsack problem as illustrative examples.
As it is not immediately clear in practice which such robustness approach is suitable for the problem at hand,
we present current approaches for evaluating and comparing robustness from the literature, and introduce the new concept of a scenario curve. Using the methods presented in this paper, an easy guide is given to the decision maker to find, solve and compare the best robust optimization method for his purposes.André Chassein; Marc Goerigkpreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4227Wed, 18 Nov 2015 08:25:22 +0100Towards wearable attention-aware systems in everyday environments
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4226
Attention-awareness is a key topic for the upcoming generation of computer-human interaction. A human moves his or her eyes to visually attends to a particular region in a scene. Consequently, he or she can process visual information rapidly and efficiently without being overwhelmed by vast amount of information from the environment. Such a physiological function called visual attention provides a computer system with valuable information of the user to infer his or her activity and the surrounding environment. For example, a computer can infer whether the user is reading text or not by analyzing his or her eye movements. Furthermore, it can infer with which object he or she is interacting by recognizing the object the user is looking at. Recent developments of mobile eye tracking technologies enable us
to capture human visual attention in ubiquitous everyday environments. There are various types of applications where attention-aware systems may be effectively incorporated. Typical examples are augmented reality (AR) applications such as Wikitude which overlay virtual information onto physical objects. This type of AR application presents augmentative information of recognized objects to the user. However, if it presents information of all recognized objects at once, the over
ow of information could be obtrusive to the user. As a solution for such a problem, attention-awareness can be integrated into a system. If a
system knows to which object the user is attending, it can present only the information of
relevant objects to the user.
Towards attention-aware systems in everyday environments, this thesis presents approaches
for analysis of user attention to visual content. Using a state-of-the-art wearable eye tracking device, one can measure the user's eye movements in a mobile scenario. By capturing the user's eye gaze position in a scene and analyzing the image where the eyes focus, a computer can recognize the visual content the user is currently attending to. I propose several image analysis methods to recognize the user-attended visual content in a scene image. For example, I present an application called Museum Guide 2.0. In Museum Guide 2.0, image-based object recognition and eye gaze analysis are combined together to recognize user-attended objects in a museum scenario. Similarly, optical character recognition
(OCR), face recognition, and document image retrieval are also combined with eye gaze analysis to identify the user-attended visual content in respective scenarios. In addition to Museum Guide 2.0, I present other applications in which these combined frameworks are effectively used. The proposed applications show that the user can benefit from active information presentation which augments the attended content in a virtual environment with
a see-through head-mounted display (HMD).
In addition to the individual attention-aware applications mentioned above, this thesis
presents a comprehensive framework that combines all recognition modules to recognize the user-attended visual content when various types of visual information resources such as text, objects, and human faces are present in one scene. In particular, two processing strategies are proposed. The first one selects an appropriate image analysis module according to the user's current cognitive state. The second one runs all image analysis modules simultaneously and merges the analytic results later. I compare these two processing strategies in terms of user-attended visual content recognition when multiple visual information resources are present in the same scene.
Furthermore, I present novel interaction methodologies for a see-through HMD using eye gaze input. A see-through HMD is a suitable device for a wearable attention-aware system for everyday environments because the user can also view his or her physical environment
through the display. I propose methods for the user's attention engagement estimation with the display, eye gaze-driven proactive user assistance functions, and a method for interacting
with a multi-focal see-through display.
Contributions of this thesis include:
• An overview of the state-of-the-art in attention-aware computer-human interaction
and attention-integrated image analysis.
• Methods for the analysis of user-attended visual content in various scenarios.
• Demonstration of the feasibilities and the benefits of the proposed user-attended visual content analysis methods with practical user-supportive applications.
• Methods for interaction with a see-through HMD using eye gaze.
• A comprehensive framework for recognition of user-attended visual content in a complex
scene where multiple visual information resources are present.
This thesis opens a novel field of wearable computer systems where computers can understand the user attention in everyday environments and provide with what the user wants. I will show the potential of such wearable attention-aware systems for everyday
environments for the next generation of pervasive computer-human interaction.Takumi Toyamadoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4226Mon, 16 Nov 2015 12:38:16 +0100The Inductive Blockwise Alperin Weight Condition for the Finite Groups \( SL_3(q) \) \( (3 \nmid (q-1)) \), \( G_2(q) \) and \( ^3D_4(q) \)
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4225
The central topic of this thesis is Alperin's weight conjecture, a problem concerning the representation theory of finite groups.
This conjecture, which was first proposed by J. L. Alperin in 1986, asserts that for any finite group the number of its irreducible Brauer characters coincides with the number of conjugacy classes of its weights. The blockwise version of Alperin's conjecture partitions this problem into a question concerning the number of irreducible Brauer characters and weights belonging to the blocks of finite groups.
A proof for this conjecture has not (yet) been found. However, the problem has been reduced to a question on non-abelian finite (quasi-) simple groups in the sense that there is a set of conditions, the so-called inductive blockwise Alperin weight condition, whose verification for all non-abelian finite simple groups implies the blockwise Alperin weight conjecture. Now the objective is to prove this condition for all non-abelian finite simple groups, all of which are known via the classification of finite simple groups.
In this thesis we establish the inductive blockwise Alperin weight condition for three infinite series of finite groups of Lie type: the special linear groups \(SL_3(q)\) in the case \(q>2\) and \(q \not\equiv 1 \bmod 3\), the Chevalley groups \(G_2(q)\) for \(q \geqslant 5\), and Steinberg's triality groups \(^3D_4(q)\).Elisabeth Schultedoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4225Mon, 09 Nov 2015 11:04:50 +0100Representative Systems and Decision Support for Multicriteria Optimization Problems
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4220
In this thesis, we investigate several upcoming issues occurring in the context of conceiving and building a decision support system. We elaborate new algorithms for computing representative systems with special quality guarantees, provide concepts for supporting the decision makers after a representative system was computed, and consider a methodology of combining two optimization problems.
We review the original Box-Algorithm for two objectives by Hamacher et al. (2007) and discuss several extensions regarding coverage, uniformity, the enumeration of the whole nondominated set, and necessary modifications if the underlying scalarization problem cannot be solved to optimality. In a next step, the original Box-Algorithm is extended to the case of three objective functions to compute a representative system with desired coverage error. Besides the investigation of several theoretical properties, we prove the correctness of the algorithm, derive a bound on the number of iterations needed by the algorithm to meet the desired coverage error, and propose some ideas for possible extensions.
Furthermore, we investigate the problem of selecting a subset with desired cardinality from the computed representative system, the Hypervolume Subset Selection Problem (HSSP). We provide two new formulations for the bicriteria HSSP, a linear programming formulation and a \(k\)-link shortest path formulation. For the latter formulation, we propose an algorithm for which we obtain the currently best known complexity bound for solving the bicriteria HSSP. For the tricriteria HSSP, we propose an integer programming formulation with a corresponding branch-and-bound scheme.
Moreover, we address the issue of how to present the whole set of computed representative points to the decision makers. Based on common illustration methods, we elaborate an algorithm guiding the decision makers in choosing their preferred solution.
Finally, we step back and look from a meta-level on the issue of how to combine two given optimization problems and how the resulting combinations can be related to each other. We come up with several different combined formulations and give some ideas for the practical approach.Tobias Kuhndoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4220Thu, 05 Nov 2015 08:54:53 +0100Event cognition at the workplace: perceiving, understanding, and practicing assembly tasks
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4211
The Event Segmentation Theory (Kurby & Zacks, 2008; Zacks, Speer, Swallow, Braver, & Reynolds, 2007) explains the perceptual organization of an ongoing activity into meaningful events. The classical event segmentation task (Newtson, 1973) involves watching an online video and indicating with key presses the event boundaries, i.e., when one event ends and the next one begins. The resulting hierarchical organization of object-based coarse events and action-based fine events gives insight into various cognitive processes. I used the Event Segmentation Theory to develop assistance and training systems for assembly workers in industrial settings at various levels - experts, new hires, and intellectually disabled people. Therefore, the first scientific question I asked was whether online and offline event segmentation result in the same event boundaries. This is important because assembly work requires not only watching activities online but processing the information offline, e.g., while performing the assembly task. By developing a special software tool that enables assessment of offline event boundaries, I established that online perception and offline elaboration lead to similar event boundaries. This study supports prior work suggesting that instructions should be structured around event boundaries.
Secondly, I investigated the importance of fine versus coarse event boundaries when learning the sequence of steps in virtual training, both for novices and experts in car door assembly. I found memory, tested by ability to predict the next frame, to be enhanced for object-based coarse events from the nearest fine event boundary. However, virtual training did not improve memory for action-based fine events from the nearest coarse event boundary. I conjecture that trainees primarily acquire the sequence of object-based coarse events in an initial training. Based on differences found in memory performance between experts and novices, I conclude that memory for action-based fine events is dependent on expertise.
Thirdly, I used the Event Segmentation Theory to investigate whether the simple and repetitive assembly tasks offered at workshops for intellectually disabled persons utilize their full cognitive potential. I analyzed event segmentation performance of 32 intellectually disabled persons compared to 30 controls using a variety of event segmentation measures. I found specific deficits in event boundary detection and hierarchical organization of events for the intellectually disabled group. However, results suggest that hierarchical organization is task-dependent. Because the event segmentation task accounted for differences in general cognitive ability, I propose the event segmentation task as diagnostic method for the need for support in executing assembly tasks.
Based on these three studies, I argue that the Event Segmentation Theory offers a framework for assessment and assistance of important attentional, perceptual, and memory processes related to assembly tasks. I demonstrate how practical applications can make use of this framework for the development of new computer-based assistance and training systems that are tailored to the users’ need for support and improve their quality of life.Katharina Sebastiandoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4211Mon, 02 Nov 2015 09:49:49 +0100Minimizing the Number of Apertures in Multileaf Collimator Sequencing with Field Splitting
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4206
In this paper we consider the problem of decomposing a given integer matrix A into
a positive integer linear combination of consecutive-ones matrices with a bound on the
number of columns per matrix. This problem is of relevance in the realization stage
of intensity modulated radiation therapy (IMRT) using linear accelerators and multileaf
collimators with limited width. Constrained and unconstrained versions of the problem
with the objectives of minimizing beam-on time and decomposition cardinality are considered.
We introduce a new approach which can be used to find the minimum beam-on
time for both constrained and unconstrained versions of the problem. The decomposition
cardinality problem is shown to be NP-hard and an approach is proposed to solve the
lexicographic decomposition problem of minimizing the decomposition cardinality subject
to optimal beam-on time.Horst W. Hamacher; Ines M. Raschendorfer; Davaatseren Baatar; Matthias Ehrgottpreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4206Wed, 28 Oct 2015 14:33:01 +0100Discrete Geometric Methods for Surface Deformation and Visualisation
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4204
Industrial design has a long history. With the introduction of Computer-Aided Engineering, industrial design was revolutionised. Due to the newly found support, the design workflow changed, and with the introduction of virtual prototyping, new challenges arose. These new engineering problems have triggered
new basic research questions in computer science.
In this dissertation, I present a range of methods which support different components of the virtual design cycle, from modifications of a virtual prototype and optimisation of said prototype, to analysis of simulation results.
Starting with a virtual prototype, I support engineers by supplying intuitive discrete normal vectors which can be used to interactively deform the control mesh of a surface. I provide and compare a variety of different normal definitions which have different strengths and weaknesses. The best choice depends on
the specific model and on an engineer’s priorities. Some methods have higher accuracy, whereas other methods are faster.
I further provide an automatic means of surface optimisation in the form of minimising total curvature. This minimisation reduces surface bending, and therefore, it reduces material expenses. The best results can be obtained for analytic surfaces, however, the technique can also be applied to real-world examples.
Moreover, I provide engineers with a curvature-aware technique to optimise mesh quality. This helps to avoid degenerated triangles which can cause numerical issues. It can be applied to any component of the virtual design cycle: as a direct modification of the virtual prototype (depending on the surface defini-
tion), during optimisation, or dynamically during simulation.
Finally, I have developed two different particle relaxation techniques that both support two components of the virtual design cycle. The first component for which they can be used is discretisation. To run computer simulations on a model, it has to be discretised. Particle relaxation uses an initial sampling,
and it improves it with the goal of uniform distances or curvature-awareness. The second component for which they can be used is the analysis of simulation results. Flow visualisation is a powerful tool in supporting the analysis of flow fields through the insertion of particles into the flow, and through tracing their movements. The particle seeding is usually uniform, e.g. for an integral surface, one could seed on a square. Integral surfaces undergo strong deformations, and they can have highly varying curvature. Particle relaxation redistributes the seeds on the surface depending on surface properties like local deformation or curvature.Anne Sabine Berresdoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4204Mon, 26 Oct 2015 16:41:48 +0100Minimizing the Number of Apertures in Multileaf Collimator Sequencing with Field Splitting
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4197
In this paper we consider the problem of decomposing a given integer matrix A into
a positive integer linear combination of consecutive-ones matrices with a bound on the
number of columns per matrix. This problem is of relevance in the realization stage
of intensity modulated radiation therapy (IMRT) using linear accelerators and multileaf
collimators with limited width. Constrained and unconstrained versions of the problem
with the objectives of minimizing beam-on time and decomposition cardinality are considered.
We introduce a new approach which can be used to find the minimum beam-on
time for both constrained and unconstrained versions of the problem. The decomposition
cardinality problem is shown to be NP-hard and an approach is proposed to solve the
lexicographic decomposition problem of minimizing the decomposition cardinality subject
to optimal beam-on time.Davaatseren Baatar; Matthias Ehrgott; Horst W. Hamacher; Ines M. Raschendorferarticlehttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4197Fri, 16 Oct 2015 11:00:21 +0200Tools and Methods to Support Opportunistic Human Activity Recognition
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4192
Today’s pervasive availability of computing devices enabled with wireless communication and location- or inertial sensing capabilities is unprecedented. The number of smartphones sold worldwide are still growing and increasing numbers of sensor enabled accessories are available which a user can wear in the shoe or at the wrist for fitness tracking, or just temporarily puts on to measure vital signs. Despite this availability of computing and sensing hardware the merit of application seems rather limited regarding the full potential of information inherent to such senor deployments. Most applications build upon a vertical design which encloses a narrowly defined sensor setup and algorithms specifically tailored to suit the application’s purpose. Successful technologies, however, such as the OSI model, which serves as base for internet communication, have used a horizontal design that allows high level communication protocols to be run independently from the actual lower-level protocols and physical medium access. This thesis contributes to a more horizontal design of human activity recognition systems at two stages. First, it introduces an integrated toolchain to facilitate the entire process of building activity recognition systems and to foster sharing and reusing of individual components. At a second stage, a novel method for automatic integration of new sensors to increase a system’s performance is presented and discussed in detail.
The integrated toolchain is built around an efficient toolbox of parametrizable components for interfacing sensor hardware, synchronization and arrangement of data streams, filtering and extraction of features, classification of feature vectors, and interfacing output devices and applications. The toolbox emerged as open-source project through several research projects and is actively used by research groups. Furthermore, the toolchain supports recording, monitoring, annotation, and sharing of large multi-modal data sets for activity recognition through a set of integrated software tools and a web-enabled database.
The method for automatically integrating a new sensor into an existing system is, at its core, a variation of well-established principles of semi-supervised learning: (1) unsupervised clustering to discover structure in data, (2) assumption that cluster membership is correlated with class membership, and (3) obtaining at a small number of labeled data points for each cluster, from which the cluster labels are inferred. In most semi-supervised approaches, however, the labels are the ground truth provided by the user. By contrast, the approach presented in this thesis uses a classifier trained on an N-dimensional feature space (old classifier) to provide labels for a few points in an (N+1)-dimensional feature space which are used to generate a new, (N+1)-dimensional classifier. The different factors that make a distribution difficult to handle are discussed, a detailed description of heuristics designed to mitigate the influences of such factors is provided, and a detailed evaluation on a set of over 3000 sensor combinations from 3 multi-user experiments that have been used by a variety of previous studies of different activity recognition methods is presented.David Bannachdoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4192Thu, 08 Oct 2015 08:29:33 +0200Application of the Finite Pointset Method to moving boundary problems for the BGK model of rarefied gas dynamics
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4182
The overall goal of the work is to simulate rarefied flows inside geometries with moving boundaries. The behavior of a rarefied flow is characterized through the Knudsen number \(Kn\), which can be very small (\(Kn < 0.01\) continuum flow) or larger (\(Kn > 1\) molecular flow). The transition region (\(0.01 < Kn < 1\)) is referred to as the transition flow regime.
Continuum flows are mainly simulated by using commercial CFD methods, which are used to solve the Euler equations. In the case of molecular flows one uses statistical methods, such as the Direct Simulation Monte Carlo (DSMC) method. In the transition region Euler equations are not adequate to model gas flows. Because of the rapid increase of particle collisions the DSMC method tends to fail, as well
Therefore, we develop a deterministic method, which is suitable to simulate problems of rarefied gases for any Knudsen number and is appropriate to simulate flows inside geometries with moving boundaries. Thus, the method we use is the Finite Pointset Method (FPM), which is a mesh-free numerical method developed at the ITWM Kaiserslautern and is mainly used to solve fluid dynamical problems.
More precisely, we develop a method in the FPM framework to solve the BGK model equation, which is a simplification of the Boltzmann equation. This equation is mainly used to describe rarefied flows.
The FPM based method is implemented for one and two dimensional physical and velocity space and different ranges of the Knudsen number. Numerical examples are shown for problems with moving boundaries. It is seen, that our method is superior to regular grid methods with respect to the implementation of boundary conditions. Furthermore, our results are comparable to reference solutions gained through CFD- and DSMC methods, respectevly.Maria Kobertdoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4182Mon, 28 Sep 2015 08:22:27 +0200Design and Verification of Behaviour-Based Systems Realising Task Sequences
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4181
Since their invention in the 1980s, behaviour-based systems have become very popular among roboticists. Their component-based nature facilitates the distributed implementation of systems, fosters reuse, and allows for early testing and integration. However, the distributed approach necessitates the interconnection of many components into a network in order to realise complex functionalities. This network is crucial to the correct operation of the robotic system. There are few sound design techniques for behaviour networks, especially if the systems shall realise task sequences. Therefore, the quality of the resulting behaviour-based systems is often highly dependant on the experience of their developers.
This dissertation presents a novel integrated concept for the design and verification of behaviour-based systems that realise task sequences. Part of this concept is a technique for encoding task sequences in behaviour networks. Furthermore, the concept provides guidance to developers of such networks. Based on a thorough analysis of methods for defining sequences, Moore machines have been selected for representing complex tasks. With the help of the structured workflow proposed in this work and the developed accompanying tool support, Moore machines defining task sequences can be transferred automatically into corresponding behaviour networks, resulting in less work for the developer and a lower risk of failure.
Due to the common integration of automatically and manually created behaviour-based components, a formal analysis of the final behaviour network is reasonable. For this purpose, the dissertation at hand presents two verification techniques and justifies the selection of model checking. A novel concept for applying model checking to behaviour-based systems is proposed according to which behaviour networks are modelled as synchronised automata. Based on such automata, properties of behaviour networks that realise task sequences can be verified or falsified. Extensive graphical tool support has been developed in order to assist the developer during the verification process.
Several examples are provided in order to illustrate the soundness of the presented design and verification techniques. The applicability of the integrated overall concept to real-world tasks is demonstrated using the control system of an autonomous bucket excavator. It can be shown that the proposed design concept is suitable for developing complex sophisticated behaviour networks and that the presented verification technique allows for verifying real-world behaviour-based systems.Christopher Armbrustdoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4181Fri, 25 Sep 2015 09:49:05 +0200Multi-Sensory Data Analysis and On-Line Evaluation for Advanced Process Control and Yield Optimization in Polymer Film Industry
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4175
The current procedures for achieving industrial process surveillance, waste reduction, and prognosis of critical process states are still insufficient in some parts of the manufacturing industry. Increasing competitive pressure, falling margins, increasing cost, just-in-time production, environmental protection requirements, and guidelines concerning energy savings pose new challenges to manufacturing companies, from the semiconductor to the pharmaceutical industry.
New, more intelligent technologies adapted to the current technical standards provide companies with improved options to tackle these situations. Here, knowledge-based approaches open up pathways that have not yet been exploited to their full extent. The Knowledge-Discovery-Process for knowledge generation describes such a concept. Based on an understanding of the problems arising during production, it derives conclusions from real data, processes these data, transfers them into evaluated models and, by this open-loop approach, reiteratively reflects the results in order to resolve the production problems. Here, the generation of data through control units, their transfer via field bus for storage in database systems, their formatting, and the immediate querying of these data, their analysis and their subsequent presentation with its ensuing benefits play a decisive role.
The aims of this work result from the lack of systematic approaches to the above-mentioned issues, such as process visualization, the generation of recommendations, the prediction of unknown sensor und production states, and statements on energy cost.
Both science and commerce offer mature statistical tools for data preprocessing, analysis and modeling, and for the final reporting step. Since their creation, the insurance business, the world of banking, market analysis, and marketing have been the application fields of these software types; they are now expanding to the production environment.
Appropriate modeling can be achieved via specific machine learning procedures, which have been established in various industrial areas, e.g., in process surveillance by optical control systems. Here, State-of-the-art classification methods are used, with multiple applications comprising sensor technology, process areas, and production site data. Manufacturing companies now intend to establish a more holistic surveillance of process data, such as, e.g., sensor failures or process deviations, to identify dependencies. The causes of quality problems must be recognized and selected in real time from about 500 attributes of a highly complex production machine. Based on these identified causes, recommendations for improvement must then be generated for the operator at the machine, in order to enable timely measures to avoid these quality deviations.
Unfortunately, the ability to meet the required increases in efficiency – with simultaneous consumption and waste minimization – still depends on data that are, for the most part, not available. There is an overrepresentation of positive examples whereas the number of definite negative examples is too low.
The acquired information can be influenced by sensor drift effects and the occurrence of quality degradation may not be adequately recognized. Sensorless diagnostic procedures with dual use of actuators can be of help here.
Moreover, in the course of a process, critical states with sometimes unexplained behavior can occur. Also in these cases, deviations could be reduced by early countermeasures.
The generation of data models using appropriate statistical methods is of advantage here.
Conventional classification methods sometimes reach their limits. Supervised learning methods are mostly used in areas of high information density with sufficient data available for the classes under examination. However, there is a growing trend (e.g., spam filtering) to apply supervised learning methods to underrepresented classes, the datasets of which are, at best, outliers or not at all existent.
The application field of One-Class Classification (OCC) deals with this issue. Standard classification procedures (e.g., k-nearest-neighbor classifier, support vector machines) can be modified in adjustment to such problems. Thereby, a control system is able to classify statements on changing process states or sensor deviations. The above-described knowledge discovery process was employed in a case study from the polymer film industry, at the Mondi Gronau GmbH, taken as an example, and accomplished by a real-data survey at the production site and subsequent data preprocessing, modeling, evaluation, and deployment as a system for the generation of recommendations. To this end, questions regarding the following topics had to be clarified: data sources, datasets and their formatting, transfer pathways, storage media, query sequences, the employed methods of classification, their adjustment to the problems at hand, evaluation of the results, construction of a dynamic cycle, and the final implementation in the production process, along with its surplus value for the company.
Pivotal options for optimization with respect to ecological and economical aspects can be found here. Capacity for improvement is given in the reduction of energy consumption, CO\(_2\) emissions, and waste at all machines. At this one site, savings of several million euros per month can be achieved.
One major difficulty so far has been hardly accessible process data which, distributed on various data sources and unconnected, in some areas led to an increased analysis effort and a lack of holistic real-time quality surveillance. Monitoring of specifications and the thus obtained support for the operator at the installation resulted in a clear disadvantage with regard to cost minimization.
The data of the case study, captured according to their purposes and in coordination with process experts, amounted to 21,900 process datasets from cast film extrusion during 2 years’ time, including sensor data from dosing facilities and 300 site-specific energy datasets from the years 2002–2014.
In the following, the investigation sequence is displayed:
1. In the first step, industrial approaches according to Industrie 4.0 and related to Big Data were investigated. The applied statistical software suites and their functions were compared with a focus on real-time data acquisition from database systems, different data formats, their sensor locations at the machines, and the data processing part. The linkage of datasets from various data sources for, e.g., labeling and downstream exploration according to the knowledge discovery process is of high importance for polymer manufacturing applications.
2. In the second step, the aims were defined according to the industrial requirements, i.e. the critical production problem called “cut-off” as the main selection, and with regard to their investigation with machine learning methods. Therefore, a system architecture corresponding to the polymer industry was developed, containing the following processing steps: data acquisition, monitoring \& recommendation, and self-configuration.
3. The novel sensor datasets, with 160–2,500 real and synthetic attributes, were acquired within 1-min intervals via PLC and field bus from an Oracle database. The 160 features were reduced to 6 dimensions with feature reduction methods. Due to underrepresentation of the critical class, the learning approaches had to be modified and optimized for one-class classification, which achieved 99% accuracy after training, testing and evaluation with real datasets.
4. In the next step, the 6-dimensional dataset was scaled into lower 1-, 2-, or 3-dimensional space with classical and non-classical mapping approaches for downstream visualization. The mapped view was separated into zones of normal and abnormal process conditions by threshold setting.
5. Afterwards, the boundary zone was investigated and an approach for trajectory extraction consisting of condition points in sequence was developed, to optimize the prediction behavior of the model. The extracted trajectories were trained, tested and evaluated by State-of-the-art classification methods, achieving a 99% recognition ratio.
6. In the last step, the best methods and processing parts were converted into a specifically developed domain-specific graphical user interface for real-time visualization of process condition changes. The requirements of such an interface were discussed with the operators with regard to intuitive handling, interactive visualization and recommendations (as e.g., messaging and traffic lights), and implemented.
The software prototype was tested at a laboratory machine. Correct recognition of abnormal process problems was achieved at a 90\% ratio. The software was afterwards transferred to a group of on-line production machines.
As demonstrated, the monthly amount of waste arising at machine M150 could be decreased from 20.96% to 12.44% during the application time. The frequency of occurrence of the specific problem was reduced by 30% related to monthly savings of 50,000 EUR.
In the approach pertaining to the energy prognosis of load profiles, monthly energy data from 2002 to 2014 (about 36 trajectories with three to eight real parameters each) were used as the basis, analyzed and modeled systematically. The prognosis quality increased with approaching target date. Thereby, the site-specific load profile for 2014 could be predicted with an accuracy of 99%.
The achievement of sustained cost reductions of several 100,000 euros, combined with additional savings of EUR 2.8 million, could be demonstrated.
The process improvements achieved while pursuing scientific targets could be successfully and permanently integrated at the case study plant. The increase in methodical and experimental knowledge was reflected by first economical results and could be verified numerically. The expectations of the company were more than fulfilled and further developments based on the new findings were initiated. Among the new finding are the transfer of the scientific findings onto more machines and even the initiation of further studies expanding into the diagnostics area.
Considering the size of the enterprise, future enhanced success should also be possible for other locations. In the course of the grid charge exemption according to EEG, the energy savings at further German locations can amount to 4–11% on a monetary basis and at least 5% based on energy. Up to 10% of materials and cost can be saved with regard to waste reduction related to specific problems. According to projections, material savings of 5–10 t per month and time savings of up to 50 person-hours are achievable. Important synergy effects can be created by the knowledge transfer.Michael Kohlertdoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4175Wed, 23 Sep 2015 12:28:30 +0200Computational Homogenization of Piezoelectric Materials using FE² Methods and Configurational Forces
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4174
Piezoelectric materials are electro-mechanically coupled materials. In these materials it is possible to produce an electric field by applying a mechanical load. This phenomenon is known as the piezoelectric effect. These materials also exhibit a mechanical deformation in response to an external electric loading, which is known as the inverse piezoelectric effect. By using these smart properties of piezoelectric materials, applications are possible in sensors and actuators. Ferroelectric or piezoelectric materials show switching behavior of the polarization in the material under an external loading. Due to this property, these materials are used to produce random access memory (RAM) for the non-volatile storage of data in computing devices. It is essential to understand the material responses of piezoelectric materials properly in order to use them in the engineering applications in innovative manners. Due to the growing interest in determining the material responses of smart material (e.g., piezoelectric material), computational methods are becoming increasingly important.
Many engineering materials possess inhomogeneities on the micro level. These inhomogeneities in the materials cause some difficulties in the determination of the material responses computationally as well as experimentally. But on the other hand, sometimes these inhomogeneities help the materials to render some good physical properties, e.g., glass or carbon fiber reinforced composites are light weight, but show higher strength. Piezoelectric materials also exhibit intense inhomogeneities on the micro level. These inhomogeneities are originating from the presence of domains, domain walls, grains, grain boundaries, micro cracks, etc. in the material. In order to capture the effects of the underlying microstructures on the macro quantities, it is essential to homogenize material parameters and the physical responses. There are several approaches to perform the homogenization. A two-scale classical (first-order) homogenization of electro-mechanically coupled materials using a FE²-approach is discussed in this work. The main objective of this work is to investigate the influences of the underlying micro structures on the macro Eshelby stress tensor and on the macro configurational forces. The configurational forces are determined in certain defect situations. These defect situations include the crack tip of a sharp crack in the macro specimen.
A literature review shows that the macro strain tensor is used to determine the micro boundary condition for the FE²-based homogenization in a small strain setting. This approach is capable to determine the consistent homogenized physical quantities (e.g., stress, strain) and the homogenized material quantities (e.g., stiffness tensor). But the application of these type of micro boundaries for the homogenization does not generate physically consistent macro Eshelby stress tensor or the macro configurational forces. Even in the absence of the micro volume configurational forces, this approach of the homogenization of piezoelectric materials produces unphysical volume configurational forces on the macro level. After a thorough investigation of the boundary conditions on the representative volume elements (RVEs), it is found that a displacement gradient driven micro boundary conditions remedy this issue. The use of the displacement gradient driven micro boundary conditions also satisfies the Hill-Mandel condition. The macro Eshelby stress tensor of a pure mechanical problem in a small deformation setting can be determined in two possible ways: by using the homogenized mechanical quantities (displacement gradient and stress tensor), or by homogenizing the Eshelby stress tensor on the micro level by volume averaging. The first approach does not satisfy the Hill-Mandel condition incorporating the Eshelby stress tensor in the energy term, on the other hand, the Hill-Mandel condition is satisfied in the second approach. In the case of homogenized Eshelby stress tensor determined from the homogenized physical quantities, the Hill-Mandel condition gives an additional energy term. A body in a small deformation setting is deformed according to the displacement gradient. If the homogenization is done using strain driven micro boundary conditions, the micro domain is deformed according to the macro strain, but the tiny vicinity around the corresponding Gauß point is deformed according to the macro displacement gradient. This implies that some restrictions are imposed at every Gauß point on the macro level. This situation helps the macro system to produce nonphysical volume configurational forces.
A FE²-based computational homogenization technique is also considered for the homogenization of piezoelectric materials. In this technique a representative volume element, which comprises of the micro structural features in the material, is assigned to every Gauß point of the macro domain. The macro displacement gradient and the macro electric field, or the macro stress tensor and the macro electric displacement are passed to the RVEs at every macro Gauß point. After determining boundary conditions on the RVEs, the homogenization process is performed. The homogenized physical quantities and the homogenized material parameters are passed back to macro Gauß points. In this work numerical investigations are carried out for two distinct situations of the microstructures of the piezoelectric materials regarding the evolution on the micro level: a) homogenization by using stationary microstructures, and b) homogenization by using evolving microstructures.
For the first case, the domain walls remain at fixed positions through out the simulations for the homogenization of piezoelectric materials. For a considerably large external loading, the real situation is different. But to understand the effects of the underlying microstructures on the macro configurational forces, to some extent it is sufficient to do the homogenization with fixed or stationary microstructures. The homogenization process is carried out for different microstructures and for different loading conditions. If the mechanical load is applied in the direction of the polarization, a smaller crack tip configurational force is observed in comparison to the configurational force determined for a mechanical loading perpendicular to the polarization. If the polarizations in the microstructures are parallel or perpendicular to the applied electric field and the applied displacement, configurational forces parallel to the crack ligament of the macro crack are observed only. In the case of inclined polarizations in the microstructures, configurational forces inclined to the crack ligament are obtained. The simulation results also reveal that an application of an external electric field to the material reduces the value of the nodal configurational forces at the crack tip.
In the second case, the interfaces of the micro structures are allowed to move from their initial positions at every step of the applied incremental external loading. Thus, at every step of the application of the external loading, the microstructures are changed when the external loading is larger than the coercive field. The movement of the interfaces is realized through the nodal configurational forces on the micro level. At every step of the application of the external loading, the nodal configurational forces per unit length on the domain walls are determined in the post-processing of the FE-simulation on the micro domain. With the help of the domain wall kinetics, the new positions of the domain walls are determined. Numerical results show that the crack tip region is the most affected area in the macro domain. For that reason a very different distribution of the macro electric displacement is observed comparing the same produced by using fixed microstructures. Due to the movement of the domain walls, the energy is dissipated in the system. As a result, a smaller configurational force appears at the crack tip on the macro level in the case of the homogenization by using evolving microstructures. By using the homogenization technique involving the evolution of the microstructures, it is possible to produce the electric displacement vs. electric field hysteresis loop on the macro level. The shape of the hysteresis loop depends on the value of the rate of application of the external electric loading. A faster deployment of the external electric field widens the hysteresis loop. Md Khalaquzzamandoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4174Wed, 16 Sep 2015 16:20:09 +0200Visualization and Analysis Techniques for Urban Microclimate Data Sets
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4171
This dissertation focuses on the visualization of urban microclimate data sets,
which describe the atmospheric impact of individual urban features. The application
and adaptation of visualization and analysis concepts to enhance the
insight into observational data sets used this specialized area are explored, motivated
through application problems encountered during active involvement
in urban microclimate research at the Arizona State University in Tempe, Arizona.
Besides two smaller projects dealing with the analysis of thermographs
recorded with a hand-held device and visualization techniques used for building
performance simulation results, the main focus of the work described in
this document is the development of a prototypic tool for the visualization
and analysis of mobile transect measurements. This observation technique involves
a sensor platform mounted to a vehicle, which is then used to traverse
a heterogeneous neighborhood to investigate the relationships between urban
form and microclimate. The resulting data sets are among the most complex
modes of in-situ observations due to their spatio-temporal dependence, their
multivariate nature, but also due to the various error sources associated with
moving platform observations.
The prototype enables urban climate researchers to preprocess their data,
to explore a single transect in detail, and to aggregate observations from multiple
traverses conducted over diverse routes for a visual delineation of climatic
microenvironments. Extending traditional analysis methods, the suggested visualization
tool provides techniques to relate the measured attributes to each
other and to the surrounding land cover structure. In addition to that, an
improved method for sensor lag correction is described, which shows the potential
to increase the spatial resolution of measurements conducted with slow
air temperature sensors.
In summary, the interdisciplinary approach followed in this thesis triggers
contributions to geospatial visualization and visual analytics, as well as to urban
climatology. The solutions developed in the course of this dissertation are
meant to support domain experts in their research tasks, providing means to
gain a qualitative overview over their specific data sets and to detect patterns,
which can then be further analyzed using domain-specific tools and methods.Kathrin Häbdoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4171Mon, 14 Sep 2015 11:13:48 +0200American-style Option Pricing and Improvement of Regression-based Monte Carlo Methods by Machine Learning Techniques
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4172
In this dissertation, we discuss how to price American-style options. Our aim is to study and improve the regression-based Monte Carlo methods. In order to have good benchmarks to compare with them, we also study the tree methods.
In the second chapter, we investigate the tree methods specifically. We do research firstly within the Black-Scholes model and then within the Heston model. In the Black-Scholes model, based on Müller's work, we illustrate how to price one dimensional and multidimensional American options, American Asian options, American lookback options, American barrier options and so on. In the Heston model, based on Sayer's research, we implement his algorithm to price one dimensional American options. In this way, we have good benchmarks of various American-style options and put them all in the appendix.
In the third chapter, we focus on the regression-based Monte Carlo methods theoretically and numerically. Firstly, we introduce two variations, the so called "Tsitsiklis-Roy method" and the "Longstaff-Schwartz method". Secondly, we illustrate the approximation of American option by its Bermudan counterpart. Thirdly we explain the source of low bias and high bias. Fourthly we compare these two methods using in-the-money paths and all paths. Fifthly, we examine the effect using different number and form of basis functions. Finally, we study the Andersen-Broadie method and present the lower and upper bounds.
In the fourth chapter, we study two machine learning techniques to improve the regression part of the Monte Carlo methods: Gaussian kernel method and kernel-based support vector machine. In order to choose a proper smooth parameter, we compare fixed bandwidth, global optimum and suboptimum from a finite set. We also point out that scaling the training data to [0,1] can avoid numerical difficulty. When out-of-sample paths of stock prices are simulated, the kernel method is robust and even performs better in several cases than the Tsitsiklis-Roy method and the Longstaff-Schwartz method. The support vector machine can keep on improving the kernel method and needs less representations of old stock prices during prediction of option continuation value for a new stock price.
In the fifth chapter, we switch to the hardware (FGPA) implementation of the Longstaff-Schwartz method and propose novel reversion formulas for the stock price and volatility within the Black-Scholes and Heston models. The test for this formula within the Black-Scholes model shows that the storage of data is reduced and also the corresponding energy consumption.Songyin Tangdoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4172Mon, 14 Sep 2015 09:21:08 +0200Tropical Geometry in Singular
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4169
Yue Rendoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4169Wed, 09 Sep 2015 10:34:35 +0200Stochastic Modeling and Approximation of Turbulent Spinning Processes
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4168
In some processes for spinning synthetic fibers the filaments are exposed to highly turbulent air flows to achieve a high degree of stretching (elongation). The quality of the resulting filaments, namely thickness and uniformity, is thus determined essentially by the aerodynamic force coming from the turbulent flow. Up to now, there is a gap between the elongation measured in experiments and the elongation obtained by numerical simulations available in the literature.
The main focus of this thesis is the development of an efficient and sufficiently accurate simulation algorithm for the velocity of a turbulent air flow and the application in turbulent spinning processes.
In stochastic turbulence models the velocity is described by an \(\mathbb{R}^3\)-valued random field. Based on an appropriate description of the random field by Marheineke, we have developed an algorithm that fulfills our requirements of efficiency and accuracy. Applying a resulting stochastic aerodynamic drag force on the fibers then allows the simulation of the fiber dynamics modeled by a random partial differential algebraic equation system as well as a quantization of the elongation in a simplified random ordinary differential equation model for turbulent spinning. The numerical results are very promising: whereas the numerical results available in the literature can only predict elongations up to order \(10^4\) we get an order of \(10^5\), which is closer to the elongations of order \(10^6\) measured in experiments.Florian Hübschdoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4168Tue, 01 Sep 2015 13:27:20 +0200Randomized Jumplists With Several Jump Pointers
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4164
In 2003, a dictionary data structure called jumplist has been introduced by Brönnimann, Cazals and Durand. It is based on a circularly closed (singly) linked list, but additional jump-pointers are added to provide shortcuts to parts further ahead in the list.
The original jump-and-walk data structure by Brönnimann, Cazals and Durand only introduces one jump-pointer per node. In this thesis, I add one more-jump pointer to each node and present algorithms for generation, insertion and search for the resulting data structure.
Furthermore, I try to evaluate the effects on the expected search costs and the complexity of the generation and insertion.
It turns out that the two-jump-pointer variant of the jumplist has a slightly better prefactor (1.2 vs. 2) in the leading term of the expected internal path length than the original version and despite the more complex structure of the two-jump-pointer variant compared to the regular jumplist, the complexity of generation and insertion remains linearithmic. Elisabeth Neumannbachelorthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4164Tue, 25 Aug 2015 13:32:46 +0200Construction of a Mittag-Leffler Analysis and its Applications
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4157
Motivated by the results of infinite dimensional Gaussian analysis and especially white noise analysis, we construct a Mittag-Leffler analysis. This is an infinite dimensional analysis with respect to non-Gaussian measures of Mittag-Leffler type which we call Mittag-Leffler measures. Our results indicate that the Wick ordered polynomials, which play a key role in Gaussian analysis, cannot be generalized to this non-Gaussian case. We provide evidence that a system of biorthogonal polynomials, called generalized Appell system, is applicable to the Mittag-Leffler measures, instead of using Wick ordered polynomials. With the help of an Appell system, we introduce a test function and a distribution space. Furthermore we give characterizations of the distribution space and we characterize the weak integrable functions and the convergent sequences within the distribution space. We construct Donsker's delta in a non-Gaussian setting as an application.
In the second part, we develop a grey noise analysis. This is a special application of the Mittag-Leffler analysis. In this framework, we introduce generalized grey Brownian motion and prove differentiability in a distributional sense and the existence of generalized grey Brownian motion local times. Grey noise analysis is then applied to the time-fractional heat equation and the time-fractional Schrödinger equation. We prove a generalization of the fractional Feynman-Kac formula for distributional initial values. In this way, we find a Green's function for the time-fractional heat equation which coincides with the solutions given in the literature.
Florian Jahnertdoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4157Tue, 18 Aug 2015 08:32:00 +0200Robust storage loading problems with stacking and payload constraints
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4158
We consider storage loading problems where items with uncertain weights have
to be loaded into a storage area, taking into account stacking and
payload constraints. Following the robust optimization paradigm, we propose
strict and adjustable optimization models for finite and interval-based
uncertainties. To solve these problems, exact decomposition and heuristic
solution algorithms are developed.
For strict robustness, we also present a compact formulation based
on a characterization of worst-case scenarios.
Computational results show that computation times and algorithm
gaps are reasonable for practical applications.
Furthermore, we find that the robustness concepts show different
potential depending on the type of data being used.
Marc Goerigk; Sigrid Knust; Xuan Thanh Lepreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4158Tue, 18 Aug 2015 08:23:49 +0200Spin and orbital magnetic moments of isolated single molecule magnets and transition metal clusters
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4143
In the present work, magnetic moments of isolated Single Molecule Magnets (SMMs) and transition
metal clusters were investigated. Gas phase X‐ray Magnetic Circular Dichroism (XMCD) in
combination with sum rule analysis served to separate the total magnetic moments of the
investigated species into their spin and orbital contributions. Two different mass spectrometry based
setups were used for the presented investigations on transition metal clusters (GAMBIT‐setup) and
on single molecule magnets (NanoClusterTrap). Both experiments were coupled to the UE52‐PGM
beamline at the BESSY II synchrotron facility (Helmholtz Zentrum Berlin) which provided the
necessary polarized X‐ray photons. The investigation of the given compounds as isolated molecules
in the gas phase enabled a determination of their intrinsic magnetic properties void of any influences
of e.g. a surrounding bulk or supporting surfaceMatthias Tombersdoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4143Tue, 11 Aug 2015 11:46:05 +0200Aspects and Applications of the Wilkie Investment Model
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4137
The Wilkie model is a stochastic asset model, developed by A.D. Wilkie in 1984 with a purpose to explore the behaviour of investment factors of insurers within the United Kingdom. Even so, there is still no analysis that studies the Wilkie model in a portfolio optimization framework thus far. Originally, the Wilkie model is considering a discrete-time horizon and we apply the concept of Wilkie model to develop a suitable ARIMA model for Malaysian data by using Box-Jenkins methodology. We obtained the estimated parameters for each sub model within the Wilkie model that suits the case of Malaysia, and permits us to analyse the result based on statistics and economics view. We then tend to review the continuous time case which was initially introduced by Terence Chan in 1998. The continuous-time Wilkie model inspired is then being employed to develop the wealth equation of a portfolio that consists of a bond and a stock. We are interested in building portfolios based on three well-known trading strategies, a self-financing strategy, a constant growth optimal strategy as well as a buy-and-hold strategy. In dealing with the portfolio optimization problems, we use the stochastic control technique consisting of the maximization problem itself, the Hamilton-Jacobi-equation, the solution to the Hamilton-Jacobi-equation and finally the verification theorem. In finding the optimal portfolio, we obtained the specific solution of the Hamilton-Jacobi-equation and proved the solution via the verification theorem. For a simple buy-and-hold strategy, we use the mean-variance analysis to solve the portfolio optimization problem.
Norizarina Ishakdoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4137Tue, 11 Aug 2015 11:06:03 +0200Interactive Visual Support for Understanding the Structural and Behavioural Aspects of Embedded Systems
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4142
Information Visualization (InfoVis) and Human-Computer Interaction (HCI) have strong ties with each other. Visualization supports the human cognitive system by providing interactive and meaningful images of the underlying data. On the other side, the HCI domain cares about the usability of the designed visualization from the human perspectives. Thus, designing a visualization system requires considering many factors in order to achieve the desired functionality and the system usability. Achieving these goals will help these people in understanding the inside behavior of complex data sets in less time.
Graphs are widely used data structures to represent the relations between the data elements in complex applications. Due to the diversity of this data type, graphs have been applied in numerous information visualization applications (e.g., state transition diagrams, social networks, etc.). Therefore, many graph layout algorithms have been proposed in the literature to help in visualizing this rich data type. Some of these algorithms are used to visualize large graphs, while others handle the medium sized graphs. Regardless of the graph size, the resulting layout should be understandable from the users’ perspective and at the same time it should fulfill a list of aesthetic criteria to increase the representation readability. Respecting these two principles leads to produce a resulting graph visualization that helps the users in understanding and exploring the complex behavior of critical systems.
In this thesis, we utilize the graph visualization techniques in modeling the structural and behavioral aspects of embedded systems. Furthermore, we focus on evaluating the resulting representations from the users’ perspectives.
The core contribution of this thesis is a framework, called ESSAVis (Embedded Systems Safety Aspect Visualizer). This framework visualizes not only some of the safety aspects (e.g. CFT models) of embedded systems, but also helps the engineers and experts in analyzing the system safety critical situations. For this, the framework provides a 2Dplus3D environment in which the 2D represents the graph representation of the abstract data about the safety aspects of the underlying embedded system while the 3D represents the underlying system 3D model. Both views are integrated smoothly together in the 3D world fashion. In order to check the effectiveness and feasibility of the framework and its sub-components, we conducted many studies with real end users as well as with general users. Results of the main study that targeted the overall ESSAVis framework show high acceptance ratio and higher accuracy with better performance using the provided visual support of the framework.
The ESSAVis framework has been designed to be compatible with different 3D technologies. This enabled us to use the 3D stereoscopic depth of such technologies to encode nodes attributes in node-link diagrams. In this regard, we conducted an evaluation study to measure the usability of the stereoscopic depth cue approach, called the stereoscopic highlighting technique, against other selected visual cues (i.e., color, shape, and sizes). Based on the results, the thesis proposes the Reflection Layer extension to the stereoscopic highlighting technique, which was also evaluated from the users’ perspectives. Additionally, we present a new technique, called ExpanD (Expand in Depth), that utilizes the depth cue to show the structural relations between different levels of details in node-link diagrams. Results of this part opens a promising direction of the research in which visualization designers can get benefits from the richness of the 3D technologies in visualizing abstract data in the information visualization domain.
Finally, this thesis proposes the application of the ESSAVis frame- work as a visual tool in the educational training process of engineers for understanding the complex concepts. In this regard, we conducted an evaluation study with computer engineering students in which we used the visual representations produced by ESSAVis to teach the principle of the fault detection and the failure scenarios in embedded systems. Our work opens the directions to investigate many challenges about the design of visualization for educational purposes. Ragaad AlTarawnehdoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4142Tue, 04 Aug 2015 12:14:31 +0200Large Display Interaction Using Mobile Devices
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4141
Large displays become more and more popular, due to dropping prices. Their size and high resolution leverages collaboration and they are capable of dis- playing even large datasets in one view. This becomes even more interesting as the number of big data applications increases. The increased screen size and other properties of large displays pose new challenges to the Human- Computer-Interaction with these screens. This includes issues such as limited scalability to the number of users, diversity of input devices in general, leading to increased learning efforts for users, and more.
Using smart phones and tablets as interaction devices for large displays can solve many of these issues. Since they are almost ubiquitous today, users can bring their own device. This approach scales well with the number of users. These mobile devices are easy and intuitive to use and allow for new interaction metaphors, as they feature a wide array of input and output capabilities, such as touch screens, cameras, accelerometers, microphones, speakers, Near-Field Communication, WiFi, etc.
This thesis will present a concept to solve the issues posed by large displays. We will show proofs-of-concept, with specialized approaches showing the via- bility of the concept. A generalized, eyes-free technique using smart phones or tablets to interact with any kind of large display, regardless of hardware or software then overcomes the limitations of the specialized approaches. This is implemented in a large display application that is designed to run under a multitude of environments, including both 2D and 3D display setups. A special visualization method is used to combine 2D and 3D data in a single visualization.
Additionally the thesis will present several approaches to solve common is- sues with large display interaction, such as target sizes on large display getting too small, expensive tracking hardware, and eyes-free interaction through vir- tual buttons. These methods provide alternatives and context for the main contribution.Jens Bauerdoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4141Tue, 04 Aug 2015 12:02:52 +0200Discrete Parallel Machine Makespan ScheLoc Problem
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4129
Scheduling-Location (ScheLoc) Problems integrate the separate fields of
scheduling and location problems. In ScheLoc Problems the objective is to
find locations for the machines and a schedule for each machine subject to
some production and location constraints such that some scheduling object-
ive is minimized. In this paper we consider the Discrete Parallel Machine
Makespan (DPMM) ScheLoc Problem where the set of possible machine loc-
ations is discrete and a set of n jobs has to be taken to the machines and
processed such that the makespan is minimized. Since the separate location
and scheduling problem are both NP-hard, so is the corresponding ScheLoc
Problem. Therefore, we propose an integer programming formulation and
different versions of clustering heuristics, where jobs are split into clusters
and each cluster is assigned to one of the possible machine locations. Since
the IP formulation can only be solved for small scale instances we propose
several lower bounds to measure the quality of the clustering heuristics. Ex-
tensive computational tests show the efficiency of the heuristics.Corinna Heßler; Kaouthar Deghdakpreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4129Tue, 28 Jul 2015 09:40:15 +0200