KLUEDO RSS FeedKLUEDO Dokumente/documents
https://kluedo.ub.uni-kl.de/index/index/
Thu, 28 May 2015 09:01:35 +0200Thu, 28 May 2015 09:01:35 +0200Upscaling Approaches for Nonlinear Processes in Lithium-Ion Batteries
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4086
Lithium-ion batteries are broadly used nowadays in all kinds of portable electronics, such as laptops, cell phones, tablets, e-book readers, digital cameras, etc. They are preferred to other types of rechargeable batteries due to their superior characteristics, such as light weight and high energy density, no memory effect, and a big number of charge/discharge cycles. The high demand and applicability of Li-ion batteries naturally give rise to the unceasing necessity of developing better batteries in terms of performance and lifetime. The aim of the mathematical modelling of Li-ion batteries is to help engineers test different battery configurations and electrode materials faster and cheaper. Lithium-ion batteries are multiscale systems. A typical Li-ion battery consists of multiple connected electrochemical battery cells. Each cell has two electrodes - anode and cathode, as well as a separator between them that prevents a short circuit.
Both electrodes have porous structure composed of two phases - solid and electrolyte. We call macroscale the lengthscale of the whole electrode and microscale - the lengthscale at which we can distinguish the complex porous structure of the electrodes. We start from a Li-ion battery model derived on the microscale. The model is based on nonlinear diffusion type of equations for the transport of Lithium ions and charges in the electrolyte and in the active material. Electrochemical reactions on the solid-electrolyte interface couple the two phases. The interface kinetics is modelled by the highly nonlinear Butler-Volmer interface conditions. Direct numerical simulations with standard methods, such as the Finite Element Method or Finite Volume Method, lead to ill-conditioned problems with a huge number of degrees of freedom which are difficult to solve. Therefore, the aim of this work is to derive upscaled models on the lengthscale of the whole electrode so that we do not have to resolve all the small-scale features of the porous microstructure thus reducing the computational time and cost. We do this by applying two different upscaling techniques - the Asymptotic Homogenization Method and the Multiscale Finite Element Method (MsFEM). We consider the electrolyte and the solid as two self-complementary perforated domains and we exploit this idea with both upscaling methods. The first method is restricted only to periodic media and periodically oscillating solutions while the second method can be applied to randomly oscillating solutions and is based on the Finite Element Method framework. We apply the Asymptotic Homogenization Method to derive a coupled macro-micro upscaled model under the assumption of periodic electrode microstructure. A crucial step in the homogenization procedure is the upscaling of the Butler-Volmer interface conditions. We rigorously determine the asymptotic order of the interface exchange current densities and we perform a comprehensive numerical study in order to validate the derived homogenized Li-ion battery model. In order to upscale the microscale battery problem in the case of random electrode microstructure we apply the MsFEM, extended to problems in perforated domains with Neumann boundary conditions on the holes. We conduct a detailed numerical investigation of the proposed algorithm and we show numerical convergence of the method that we design. We also apply the developed technique to a simplified two-dimensional Li-ion battery problem and we show numerical convergence of the solution obtained with the MsFEM to the reference microscale one. Vasilena Taralovadoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4086Thu, 28 May 2015 09:01:35 +0200Simulation of Degradation Processes in Lithium-Ion Batteries
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4085
Lithium-ion batteries are increasingly becoming an ubiquitous part of our everyday life - they are present in mobile phones, laptops, tools, cars, etc. However, there are still many concerns about their longevity and their safety. In this work we focus on the simulation of several degradation mechanisms on the microscopic scale, where one can resolve the active materials inside the electrodes of the lithium-ion batteries as porous structures. We mainly study two aspects - heat generation and mechanical stress. For the former we consider an electrochemical non-isothermal model on the spatially resolved porous scale to observe the temperature increase inside a battery cell, as well as to observe the individual heat sources to assess their contributions to the total heat generation. As a result from our experiments, we determined that the temperature has very small spatial variance for our test cases and thus allows for an ODE formulation of the heat equation.
The second aspect that we consider is the generation of mechanical stress as a result of the insertion of lithium ions in the electrode materials. We study two approaches - using small strain models and finite strain models. For the small strain models, the initial geometry and the current geometry coincide. The model considers a diffusion equation for the lithium ions and equilibrium equation for the mechanical stress. First, we test a single perforated cylindrical particle using different boundary conditions for the displacement and with Neumann boundary conditions for the diffusion equation. We also test for cylindrical particles, but with boundary conditions for the diffusion equation in the electrodes coming from an isothermal electrochemical model for the whole battery cell. For the finite strain models we take in consideration the deformation of the initial geometry as a result of the intercalation and the mechanical stress. We compare two elastic models to study the sensitivity of the predicted elastic behavior on the specific model used. We also consider a softening of the active material dependent on the concentration of the lithium ions and using data for silicon electrodes. We recover the general behavior of the stress from known physical experiments.
Some models, like the mechanical models we use, depend on the local values of the concentration to predict the mechanical stress. In that sense we perform a short comparative study between the Finite Element Method with tetrahedral elements and the Finite Volume Method with voxel volumes for an isothermal electrochemical model.
The spatial discretizations of the PDEs are done using the Finite Element Method. For some models we have discontinuous quantities where we adapt the FEM accordingly. The time derivatives are discretized using the implicit Backward Euler method. The nonlinear systems are linearized using the Newton method. All of the discretized models are implemented in a C++ framework developed during the thesis. Maxim Taralovdoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4085Thu, 28 May 2015 08:47:34 +0200Isogeometric Finite Element Analysis of Nonlinear Structural Vibrations
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4079
In this thesis we present a new method for nonlinear frequency response analysis of mechanical vibrations.
For an efficient spatial discretization of nonlinear partial differential equations of continuum mechanics we employ the concept of isogeometric analysis. Isogeometric finite element methods have already been shown to possess advantages over classical finite element discretizations in terms of exact geometry representation and higher accuracy of numerical approximations using spline functions.
For computing nonlinear frequency response to periodic external excitations, we rely on the well-established harmonic balance method. It expands the solution of the nonlinear ordinary differential equation system resulting from spatial discretization as a truncated Fourier series in the frequency domain.
A fundamental aspect for enabling large-scale and industrial application of the method is model order reduction of the spatial discretization of the equation of motion. Therefore we propose the utilization of a modal projection method enhanced with modal derivatives, providing second-order information. We investigate the concept of modal derivatives theoretically and using computational examples we demonstrate the applicability and accuracy of the reduction method for nonlinear static computations and vibration analysis.
Furthermore, we extend nonlinear vibration analysis to incompressible elasticity using isogeometric mixed finite element methods.
Oliver Weegerdoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4079Wed, 20 May 2015 11:46:03 +0200Isogeometric Shell Discretizations for Flexible Multibody Dynamics
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4076
This work aims at including nonlinear elastic shell models in a multibody framework. We focus our attention to Kirchhoff-Love shells and explore the benefits of an isogeometric approach, the latest development in finite element methods, within a multibody system. Isogeometric analysis extends isoparametric finite elements to more general functions such as B-Splines and Non-Uniform Rational B-Splines (NURBS) and works on exact geometry representations even at the coarsest level of discretizations. Using NURBS as basis functions, high regularity requirements of the shell model, which are difficult to achieve with standard finite elements, are easily fulfilled. A particular advantage is the promise of simplifying the mesh generation step, and mesh refinement is easily performed by eliminating the need for communication with the geometry representation in a Computer-Aided Design (CAD) tool.
Quite often the domain consists of several patches where each patch is parametrized by means of NURBS, and these patches are then glued together by means of continuity conditions. Although the techniques known from domain decomposition can be carried over to this situation, the analysis of shell structures is substantially more involved as additional angle preservation constraints between the patches might arise. In this work, we address this issue in the stationary and transient case and make use of the analogy to constrained mechanical systems with joints and springs as interconnection elements. Starting point of our work is the bending strip method which is a penalty approach that adds extra stiffness to the interface between adjacent patches and which is found to lead to a so-called stiff mechanical system that might suffer from ill-conditioning and severe stepsize restrictions during time integration. As a remedy, an alternative formulation is developed that improves the condition number of the system and removes the penalty parameter dependence. Moreover, we study another alternative formulation with continuity constraints applied to triples of control points at the interface. The approach presented here to tackle stiff systems is quite general and can be applied to all penalty problems fulfilling some regularity requirements.
The numerical examples demonstrate an impressive convergence behavior of the isogeometric approach even for a coarse mesh, while offering substantial savings with respect to the number of degrees of freedom. We show a comparison between the different multipatch approaches and observe that the alternative formulations are well conditioned, independent of any penalty parameter and give the correct results. We also present a technique to couple the isogeometric shells with multibody systems using a pointwise interaction. Anmol Goyaldoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4076Tue, 19 May 2015 09:55:55 +0200Robustness against Relaxed Memory Models
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4074
Sequential Consistency (SC) is the memory model traditionally applied by programmers and verification tools for the analysis of multithreaded programs.
SC guarantees that instructions of each thread are executed atomically and in program order.
Modern CPUs implement memory models that relax the SC guarantees: threads can execute instructions out of order, stores to the memory can be observed by different threads in different order.
As a result of these relaxations, multithreaded programs can show unexpected, potentially undesired behaviors, when run on real hardware.
The robustness problem asks if a program has the same behaviors under SC and under a relaxed memory model.
Behaviors are formalized in terms of happens-before relations — dataflow and control-flow relations between executed instructions.
Programs that are robust against a memory model produce the same results under this memory model and under SC.
This means, they only need to be verified under SC, and the verification results will carry over to the relaxed setting.
Interestingly, robustness is a suitable correctness criterion not only for multithreaded programs, but also for parallel programs running on computer clusters.
Parallel programs written in Partitioned Global Address Space (PGAS) programming model, when executed on cluster, consist of multiple processes, each running on its cluster node.
These processes can directly access memories of each other over the network, without the need of explicit synchronization.
Reorderings and delays introduced on the network level, just as the reorderings done by the CPUs, may result into unexpected behaviors that are hard to reproduce and fix.
Our first contribution is a generic approach for solving robustness against relaxed memory models.
The approach involves two steps: combinatorial analysis, followed by an algorithmic development.
The aim of combinatorial analysis is to show that among program computations violating robustness there is always a computation in a certain normal form, where reorderings are applied in a restricted way.
In the algorithmic development we work out a decision procedure for checking whether a program has violating normal-form computations.
Our second contribution is an application of the generic approach to widely implemented memory models, including Total Store Order used in Intel x86 and Sun SPARC architectures, the memory model of Power architecture, and the PGAS memory model.
We reduce robustness against TSO to SC state reachability for a modified input program.
Robustness against Power and PGAS is reduced to language emptiness for a novel class of automata — multiheaded automata.
The reductions lead to new decidability results.
In particular, robustness is PSPACE-complete for all the considered memory models.
Egor Derevenetcdoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4074Mon, 18 May 2015 10:12:09 +0200Portfolio Optimization and Stochastic Control under Transaction Costs
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4073
This thesis is concerned with stochastic control problems under transaction costs. In particular, we consider a generalized menu cost problem with partially controlled regime switching, general multidimensional running cost problems and the maximization of long-term growth rates in incomplete markets. The first two problems are considered under a general cost structure that includes a fixed cost component, whereas the latter is analyzed under proportional and Morton-Pliska
transaction costs.
For the menu cost problem and the running cost problem we provide an equivalent characterization of the value function by means of a generalized version of the Ito-Dynkin formula instead of the more restrictive, traditional approach via the use of quasi-variational inequalities (QVIs). Based on the finite element method and weak solutions of QVIs in suitable Sobolev spaces, the value function is constructed iteratively. In addition to the analytical results, we study a novel application of the menu cost problem in management science. We consider a company that aims to implement an optimal investment and marketing strategy and must decide when to issue a new version of a product and when and how much
to invest into marketing.
For the long-term growth rate problem we provide a rigorous asymptotic analysis under both proportional and Morton-Pliska transaction costs in a general incomplete market that includes, for instance, the Heston stochastic volatility model and the Kim-Omberg stochastic excess return model as special cases. By means of a dynamic programming approach leading-order optimal strategies are constructed
and the leading-order coefficients in the expansions of the long-term growth rates are determined. Moreover, we analyze the asymptotic performance of Morton-Pliska strategies in settings with proportional transaction costs. Finally, pathwise optimality of the constructed strategies is established.Yaroslav Melnykdoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4073Mon, 18 May 2015 10:01:57 +0200A stochastic model featuring acid induced gaps during tumor progression.
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4062
In this paper we propose a phenomenological model for the formation of an interstitial gap between the tumor and the stroma. The gap
is mainly filled with acid produced by the progressing edge of the tumor front. Our setting extends existing models for acid-induced tumor invasion models to incorporate
several features of local invasion like formation of gaps, spikes, buds, islands, and cavities. These behaviors are obtained mainly due to the random dynamics at the intracellular
level, the go-or-grow-or-recede dynamics on the population scale, together with the nonlinear coupling between the microscopic (intracellular) and macroscopic (population)
levels. The wellposedness of the model is proved using the semigroup technique and 1D and 2D numerical simulations are performed to illustrate model predictions and draw
conclusions based on the observed behavior.Sandesh Athni Hiremath; Christina Surulescupreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4062Wed, 29 Apr 2015 12:21:48 +0200Image based characterization and geometric modeling of 3d materials microstructures
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4060
It is well known that the structure at a microscopic point of view strongly influences the
macroscopic properties of materials. Moreover, the advancement in imaging technologies allows
to capture the complexity of the structures at always decreasing scales. Therefore, more
sophisticated image analysis techniques are needed.
This thesis provides tools to geometrically characterize different types of three-dimensional
structures with applications to industrial production and to materials science. Our goal is to
enhance methods that allow the extraction of geometric features from images and the automatic
processing of the information.
In particular, we investigate which characteristics are sufficient and necessary to infer
the desired information, such as particles classification for technical cleanliness and
fitting of stochastic models in materials science.
In the production line of automotive industry, dirt particles collect on the surface of mechanical
components. Residual dirt might reduce the performance and durability of assembled products.
Geometric characterization of these particles allows to identify their potential danger.
While the current standards are based on 2d microscopic images, we extend the characterization
to 3d.
In particular, we provide a collection of parameters that exhaustively describe size and shape
of three-dimensional objects and can be efficiently estimated from binary images. Furthermore,
we show that only a few features are sufficient to classify particles according to the standards
of technical cleanliness.
In the context of materials science, we consider two types of microstructures: fiber systems
and foams.
Stochastic geometry grants the fundamentals for versatile models able to encompass the
geometry observed in the samples. To allow automatic model fitting, we need rules stating which
parameters of the model yield the best-fitting characteristics. However, the validity of such
rules strongly depends on the properties of the structures and on the choice of the model.
For instance, isotropic orientation distribution yields the best theoretical results for Boolean
models and Poisson processes of cylinders with circular cross sections. Nevertheless, fiber
systems in composites are often anisotropic.
Starting from analytical results from the literature, we derive formulae for anisotropic
Poisson processes of cylinders with polygonal cross sections that can be directly used in
applications. We apply this procedure to a sample of medium density fiber board. Even
if image resolution does not allow to estimate reliably characteristics of the singles fibers,
we can fit Boolean models and Poisson cylinder processes. In particular, we show the complete
model fitting and validation procedure with cylinders with circular and squared cross sections.
Different problems arise when modeling cellular materials. Motivated by the physics of foams,
random Laguerre tessellations are a good choice to model the pore system of foams.
Considering tessellations generated by systems of non-overlapping spheres allows to control the
cell size distribution, but yields the loss of an analytical description of the model.
Nevertheless, automatic model fitting can still be obtained by approximating the characteristics
of the tessellation depending on the parameters of the model. We investigate how to improve
the choice of the model parameters. Angles between facets and between edges were never considered
so far. We show that the distributions of angles in Laguerre tessellations
depend on the model parameters. Thus, including the moments of the angles still allows automatic
model fitting. Moreover, we propose an algorithm to estimate angles from images of real foams.
We observe that angles are matched well in random Laguerre tessellations also when they are not
employed to choose the model parameters. Then, we concentrate on the edge length distribution. In
Laguerre tessellations occur many more short edges than in real foams. To deal with this problem,
we consider relaxed models. Relaxation refers to topological and structural modifications
of a tessellation in order to make it comply with Plateau's laws of mechanical equilibrium. We inspect
samples of different types of foams, closed and open cell foams, polymeric and metallic. By comparing
the geometric characteristics of the model and of the relaxed tessellations, we conclude that whether
the relaxation improves the edge length distribution strongly depends on the type of foam.
Irene Vecchiodoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4060Wed, 29 Apr 2015 12:13:44 +0200A Viscosity Adaptive Lattice Boltzmann Method
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4058
The present thesis describes the development and validation of a viscosity adaption method for the numerical simulation of non-Newtonian fluids on the basis of the Lattice Boltzmann Method (LBM), as well as the development and verification of the related software bundle SAM-Lattice.
By now, Lattice Boltzmann Methods are established as an alternative approach to classical computational fluid dynamics
methods. The LBM has been shown to be an accurate and efficient tool for the numerical simulation of weakly compressible or incompressible fluids. Fields of application reach from turbulent simulations through thermal problems to acoustic calculations among others. The transient nature of the method and the need for a regular grid based, non body conformal discretization makes the LBM ideally suitable for simulations involving complex solids. Such geometries are common, for instance, in the food processing industry, where fluids are mixed by static mixers or agitators. Those fluid flows are often laminar and non-Newtonian.
This work is motivated by the immense practical use of the Lattice Boltzmann Method, which is limited due to stability issues. The stability of the method is mainly influenced by the discretization and the viscosity of the fluid. Thus, simulations of non-Newtonian fluids, whose kinematic viscosity depend on the shear rate, are problematic. Several authors have shown that the LBM is capable of simulating those fluids. However, the vast majority of the simulations in the literature are carried out for simple geometries and/or moderate shear rates, where the LBM is still stable. Special care has to be taken for practical non-Newtonian Lattice Boltzmann simulations in order to keep them stable. A straightforward way is to truncate the modeled viscosity range by numerical stability criteria. This is an effective approach, but from the physical point of view the viscosity bounds are chosen arbitrarily. Moreover, these bounds depend on and vary with the grid and time step size and, therefore, with the simulation Mach number, which is freely chosen at the start of the simulation. Consequently, the modeled viscosity range may not fit to the actual range of the physical problem, because the correct simulation Mach number is unknown a priori. A way around is, to perform precursor simulations on a fixed grid to determine a possible time step size and simulation Mach number, respectively. These precursor simulations can be time consuming and expensive, especially for complex cases and a number of operating points. This makes the LBM unattractive for use in practical simulations of non-Newtonian fluids.
The essential novelty of the method, developed in the course of this thesis, is that the numerically modeled viscosity range is consistently adapted to the actual physically exhibited viscosity range through change of the simulation time step and the simulation Mach number, respectively, while the simulation is running. The algorithm is robust, independent of the Mach number the simulation was started with, and applicable for stationary flows as well as transient flows. The method for the viscosity adaption will be referred to as the "viscosity adaption method (VAM)" and the combination with LBM leads to the "viscosity adaptive LBM (VALBM)".
Besides the introduction of the VALBM, a goal of this thesis is to offer assistance in the spirit of a theory guide to students and assistant researchers concerning the theory of the Lattice Boltzmann Method and its implementation in SAM-Lattice. In Chapter 2, the mathematical foundation of the LBM is given and the route from the BGK approximation of the Boltzmann equation to the Lattice Boltzmann (BGK) equation is delineated in detail.
The derivation is restricted to isothermal flows only. Restrictions of the method, such as low Mach number flows are highlighted and the accuracy of the method is discussed.
SAM-Lattice is a C++ software bundle developed by the author and his colleague Dipl.-Ing. Andreas Schneider. It is a highly automated package for the simulation of isothermal flows of incompressible or weakly compressible fluids in 3D on the basis of the Lattice Boltzmann Method. By the time of writing of this thesis, SAM-Lattice comprises 5 components. The main components are the highly automated lattice generator SamGenerator and the Lattice Boltzmann solver SamSolver. Postprocessing is done with ParaSam, which is our extension of the
open source visualization software ParaView. Additionally, domain decomposition for MPI
parallelism is done by SamDecomposer, which makes use of the graph partitioning library MeTiS. Finally, all mentioned components can be controlled through a user friendly GUI (SamLattice) implemented by the author using QT, including features to visually track output data.
In Chapter 3, some fundamental aspects on the implementation of the main components, including the corresponding flow charts will be discussed. Actual details on the implementation are given in the comprehensive programmers guides to SamGenerator and SamSolver.
In order to ensure the functionality of the implementation of SamSolver, the solver is verified in Chapter 4 for Stokes's First Problem, the suddenly accelerated plate, and for Stokes's Second Problem, the oscillating plate, both for Newtonian fluids. Non-Newtonian fluids are modeled in SamSolver with the power-law model according to Ostwald de Waele. The implementation for non-Newtonian fluids is verified for the Hagen-Poiseuille channel flow in conjunction with a convergence analysis of the method. At the same time, the local grid refinement as it is implemented in SamSolver, is verified. Finally, the verification of higher order boundary conditions is done for the 3D Hagen-Poiseuille pipe flow for both Newtonian and non-Newtonian fluids.
In Chapter 5, the theory of the viscosity adaption method is introduced. For the adaption process, a target collision frequency or target simulation Mach number must be chosen and the distributions must be rescaled according to the modified time step size. A convenient choice is one of the stability bounds. The time step size for the adaption step is deduced from the target collision frequency \(\Omega_t\) and the currently minimal or maximal shear rate in the system, while obeying auxiliary conditions for the simulation Mach number. The adaption is done in the collision step of the Lattice Boltzmann algorithm. We use the transformation matrices of the MRT model to map from distribution space to moment space and vice versa. The actual scaling of the distributions is conducted on the back mapping, because we use the transformation matrix on the basis of the new adaption time step size. It follows an additional rescaling of the non-equilibrium part of the distributions, because of the form of the definition for the discrete stress tensor in the LBM context. For that reason it is clear, that the VAM is applicable for the SRT model as well as the MRT model, where there is virtually no extra cost in the latter case. Also, in Chapter 5, the multi level treatment will be discussed.
Depending on the target collision frequency and the target Mach number, the VAM can be used to optimally use the viscosity range that can be modeled within the stability bounds or it can be used to drastically accelerate the simulation. This is shown in Chapter 6. The viscosity adaptive LBM is verified in the stationary case for the Hagen-Poiseuille channel flow and in the transient case for the Wormersley flow, i.e., the pulsatile 3D Hagen-Poiseuille pipe flow. Although, the VAM is used here for fluids that can be modeled with the power-law approach, the implementation of the VALBM is straightforward for other non-Newtonian models, e.g., the Carreau-Yasuda or Cross model. In the same chapter, the VALBM is validated for the case of a propeller viscosimeter developed at the chair SAM. To this end, the experimental data of the torque on the impeller of three shear thinning non-Newtonian liquids serve for the validation. The VALBM shows excellent agreement with experimental data for all of the investigated fluids and in every operating point. For reasons of comparison, a series of standard LBM simulations is carried out with different simulation Mach numbers, which partly show errors of several hundred percent. Moreover, in Chapter 7, a sensitivity analysis on the parameters used within the VAM is conducted for the simulation of the propeller viscosimeter.
Finally, the accuracy of non-Newtonian Lattice Boltzmann simulations with the SRT and the MRT model is analyzed in detail. Previous work for Newtonian fluids indicate that depending on the numerical value of the collision frequency \(\Omega\), additional artificial viscosity is introduced due to the finite difference scheme, which negatively influences the accuracy. For the non-Newtonian case, an error estimate in the form of a functional is derived on the basis of a series expansion of the Lattice Boltzmann equation. This functional can be solved analytically for the case of the Hagen-Poiseuille channel flow of non-Newtonian fluids. The estimation of the error minimum is excellent in regions where the \(\Omega\) error is the dominant source of error as opposed to the compressibility error.
Result of this dissertation is a verified and validated software bundle on the basis of the viscosity adaptive Lattice Boltzmann Method. The work restricts itself on the simulation of isothermal, laminar flows with small Mach numbers. As further research goals, the testing of the VALBM with minimal error estimate and the investigation of the VALBM in the case of turbulent flows is suggested.Daniel Conraddoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4058Mon, 27 Apr 2015 08:33:27 +0200A Consistent Large Eddy Approach for Lattice Boltzmann Methods and its Application to Complex Flows
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4056
Lattice Boltzmann Methods have shown to be promising tools for solving fluid flow problems. This is related to the advantages of these methods, which are among others, the simplicity in handling complex geometries and the high efficiency in calculating transient flows. Lattice Boltzmann Methods are mesoscopic methods, based on discrete particle dynamics. This is in contrast to conventional Computational Fluid Dynamics methods, which are based on the solution of the continuum equations. Calculations of turbulent flows in engineering depend in general on modeling, since resolving of all turbulent scales is and will be in near future far beyond the computational possibilities. One of the most auspicious modeling approaches is the large eddy simulation, in which the large, inhomogeneous turbulence structures are directly computed and the smaller, more homogeneous structures are modeled.
In this thesis, a consistent large eddy approach for the Lattice Boltzmann Method is introduced. This large eddy model includes, besides a subgrid scale model, appropriate boundary conditions for wall resolved and wall modeled calculations. It also provides conditions for turbulent domain inlets. For the case of wall modeled simulations, a two layer wall model is derived in the Lattice Boltzmann context. Turbulent inlet conditions are achieved by means of a synthetic turbulence technique within the Lattice Boltzmann Method.
The proposed approach is implemented in the Lattice Boltzmann based CFD package SAM-Lattice, which has been created in the course of this work. SAM-Lattice is feasible of the calculation of incompressible or weakly compressible, isothermal flows of engineering interest in complex three dimensional domains. Special design targets of SAM-Lattice are high automatization and high performance.
Validation of the suggested large eddy Lattice Boltzmann scheme is performed for pump intake flows, which have not yet been treated by LBM. Even though, this numerical method is very suitable for this kind of vortical flows in complicated domains. In general, applications of LBM to hydrodynamic engineering problems are rare. The results of the pump intake validation cases reveal that the proposed numerical approach is able to represent qualitatively and quantitatively the very complex flows in the intakes. The findings provided in this thesis can serve as the basis for a broader application of LBM in hydrodynamic engineering problems.Andreas Schneiderdoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4056Mon, 27 Apr 2015 08:24:57 +0200New N,N,P-Ligands and Their Heterobimetallic Complexes
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4052
The aim of this work was to synthesize and characterize new bidentate N,N,P-ligands and their corresponding heterobimetallic complexes. These bidentate pyridylpyrimidine aminophosphine ligands were synthesized by ring closure of two different enaminones ( 3-(dimethylamino)-1-(pyridine-2-yl)-prop-2-en-1-one or 3-(dimethylamino)-1-(pyridine-2-yl)-but-2-en-1-one) with excess amount of guanidinium salts in the presence of base. The novel phosphine functionalized guanidinium salts were prepared from 2-(diphenylphosphinyl)ethylamine or 3-(diphenyl-phosphinyl)propylamine. These bidentate N,N,P-ligands contain hard and soft donor sites which allows the coordination of two different metal centers and bimetallic complexes. These bimetallic complexes can exhibit a unique behavior as a result of a cooperation between the two metal atoms. First, the gold(I) complexes of all these four different ligands were synthesized. The gold metal coordinates only to the phosphorus atom. It was proved by X-Ray crystallography technique and 31P NMR spectroscopy. Addition to the gold(I)-monometallic complexes, trans- coordinated rhodium complex of (2-amino)pyridylpyrimidine aminophosphine ligand was successfully prepared. The characterization of this complex was achieved by NMR and IR spectroscopy. Reacting the mono gold(I) complexes with the different metal salts like Pd(PhCN)2Cl2, ZnCl2, [Ru(p-cymene)Cl2] dimer gave the target heterobimetallic complexes. The second metal centers coordinated to the N,N donor site which was proved by the help of NMR spectroscopy and ESI-MS measurements. The Au(I) and Au-Zn complexes of N,N,P-ligands were examined as catalysts for the hydroamidation reaction of cyclohexene with p-toluenesulfonamide. They did not show activities under the tested conditions. Further studies are necessary to understand the catalytic activities and cooperativity between the two metal atoms. In addition, bi-and trimetallic complexes with the rhodium compound could be synthesized and tested in different organic transformations. Furthermore, the chiral hydroxyl[2.2]paracyclophane substituted with five different aminopyrimidines were accomplished. These aminopyrimidine ligands were synthesized by a cyclization reaction with hydroxyl[2.2]paracyclophane substituted enaminone and excess amount of corresponding guanidinium salts under basic conditions. In the last part of this work, kinetic studies of cyclopalladation reaction of the 2-(arylaminopyrimidin-4-yl)pyridine ligands with Pd(PhCN)2 These measurements were carried out by using UV-Vis spectroscopy. The spectral studies of cyclometallation step showed that the reaction fits a second order kinetics. In addition to this, a full kinetic investigation was performed at different temperatures and the activation parameters of complex formation were calculated.
Merve Cayirdoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4052Tue, 21 Apr 2015 13:14:32 +0200User-Centered Collaborative Visualization
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4051
The last couple of years have marked the entire field of information technology with the introduction of a new global resource, called data. Certainly, one can argue that large amounts of information and highly interconnected and complex datasets were available since the dawn of the computer and even centuries before. However, it has been only a few years since digital data has exponentially expended, diversified and interconnected into an overwhelming range of domains, generating an entire universe of zeros and ones. This universe represents a source of information with the potential of advancing a multitude of fields and sparking valuable insights. In order to obtain this information, this data needs to be explored, analyzed and interpreted.
While a large set of problems can be addressed through automatic techniques from fields like artificial intelligence, machine learning or computer vision, there are various datasets and domains that still rely on the human intuition and experience in order to parse and discover hidden information. In such instances, the data is usually structured and represented in the form of an interactive visual representation that allows users to efficiently explore the data space and reach valuable insights. However, the experience, knowledge and intuition of a single person also has its limits. To address this, collaborative visualizations allow multiple users to communicate, interact and explore a visual representation by building on the different views and knowledge blocks contributed by each person.
In this dissertation, we explore the potential of subjective measurements and user emotional awareness in collaborative scenarios as well as support flexible and user- centered collaboration in information visualization systems running on tabletop displays. We commence by introducing the concept of user-centered collaborative visualization (UCCV) and highlighting the context in which it applies. We continue with a thorough overview of the state-of-the-art in the areas of collaborative information visualization, subjectivity measurement and emotion visualization, combinable tabletop tangibles, as well as browsing history visualizations. Based on a new web browser history visualization for exploring user parallel browsing behavior, we introduce two novel user-centered techniques for supporting collaboration in co-located visualization systems. To begin with, we inspect the particularities of detecting user subjectivity through brain-computer interfaces, and present two emotion visualization techniques for touch and desktop interfaces. These visualizations offer real-time or post-task feedback about the users’ affective states, both in single-user and collaborative settings, thus increasing the emotional self-awareness and the awareness of other users’ emotions. For supporting collaborative interaction, a novel design for tabletop tangibles is described together with a set of specifically developed interactions for supporting tabletop collaboration. These ring-shaped tangibles minimize occlusion, support touch interaction, can act as interaction lenses, and describe logical operations through nesting operations. The visualization and the two UCCV techniques are each evaluated individually capturing a set of advantages and limitations of each approach. Additionally, the collaborative visualization supported by the two UCCV techniques is also collectively evaluated in three user studies that offer insight into the specifics of interpersonal interaction and task transition in collaborative visualization. The results show that the proposed collaboration support techniques do not only improve the efficiency of the visualization, but also help maintain the collaboration process and aid a balanced social interaction.Daniel Cerneadoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4051Mon, 20 Apr 2015 14:18:00 +0200Robustness for regression models with asymmetric error distribution
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4046
In this work we focus on the regression models with asymmetrical error distribution,
more precisely, with extreme value error distributions. This thesis arises in the framework
of the project "Robust Risk Estimation". Starting from July 2011, this project won
three years funding by the Volkswagen foundation in the call "Extreme Events: Modelling,
Analysis, and Prediction" within the initiative "New Conceptual Approaches to
Modelling and Simulation of Complex Systems". The project involves applications in
Financial Mathematics (Operational and Liquidity Risk), Medicine (length of stay and
cost), and Hydrology (river discharge data). These applications are bridged by the
common use of robustness and extreme value statistics.
Within the project, in each of these applications arise issues, which can be dealt with by
means of Extreme Value Theory adding extra information in the form of the regression
models. The particular challenge in this context concerns asymmetric error distributions,
which significantly complicate the computations and make desired robustification
extremely difficult. To this end, this thesis makes a contribution.
This work consists of three main parts. The first part is focused on the basic notions
and it gives an overview of the existing results in the Robust Statistics and Extreme
Value Theory. We also provide some diagnostics, which is an important achievement of
our project work. The second part of the thesis presents deeper analysis of the basic
models and tools, used to achieve the main results of the research.
The second part is the most important part of the thesis, which contains our personal
contributions. First, in Chapter 5, we develop robust procedures for the risk management
of complex systems in the presence of extreme events. Mentioned applications use time
structure (e.g. hydrology), therefore we provide extreme value theory methods with time
dynamics. To this end, in the framework of the project we considered two strategies. In
the first one, we capture dynamic with the state-space model and apply extreme value
theory to the residuals, and in the second one, we integrate the dynamics by means of
autoregressive models, where the regressors are described by generalized linear models.
More precisely, since the classical procedures are not appropriate to the case of outlier
presence, for the first strategy we rework classical Kalman smoother and extended
Kalman procedures in a robust way for different types of outliers and illustrate the performance
of the new procedures in a GPS application and a stylized outlier situation.
To apply approach to shrinking neighborhoods we need some smoothness, therefore for
the second strategy, we derive smoothness of the generalized linear model in terms of
L2 differentiability and create sufficient conditions for it in the cases of stochastic and
deterministic regressors. Moreover, we set the time dependence in these models by
linking the distribution parameters to the own past observations. The advantage of
our approach is its applicability to the error distributions with the higher dimensional
parameter and case of regressors of possibly different length for each parameter. Further,
we apply our results to the models with generalized Pareto and generalized extreme value
error distributions.
Finally, we create the exemplary implementation of the fixed point iteration algorithm
for the computation of the optimally robust in
uence curve in R. Here we do not aim to
provide the most
exible implementation, but rather sketch how it should be done and
retain points of particular importance. In the third part of the thesis we discuss three applications,
operational risk, hospitalization times and hydrological river discharge data,
and apply our code to the real data set taken from Jena university hospital ICU and
provide reader with the various illustrations and detailed conclusions.Daria Pupashenkodoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4046Thu, 16 Apr 2015 13:53:08 +0200A multiscale modeling approach to glioma invasion with therapy
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4048
We consider the multiscale model for glioma growth introduced in a previous work and extend it to account
for therapy effects. Thereby, three treatment strategies involving surgical resection, radio-, and
chemotherapy are compared for their efficiency. The chemotherapy relies on inhibiting the binding
of cell surface receptors to the surrounding tissue, which impairs both migration and proliferation.
Alexander Hunt; Christina Surulescupreprinthttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4048Wed, 08 Apr 2015 14:26:45 +0200European Groupings of Territorial Cooperation (EGTCs): Applicability in the Transnational and Interregional Cooperation – The Example of Network-EGTCs –
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4047
This diploma thesis sets out to analyse the applicability of the instrument ’European Grouping of
Territorial Cooperation (EGTC)’ in the transnational and interregional non-contiguous cooperation.
EGTCs that are applied in spatially non-contiguous cooperations are called ’Network-EGTCs’. As
no scientific research about network-EGTCs has been made so far, this diploma thesis fills this
research gap.
As a basis for the analysis, a literature review on the instrument EGTC in general and its historic
background was conducted. In addition the scientific literature has been searched for characteristics
of non-contiguous cooperations and different stakeholders were interviewed for their
estimations about network-EGTCs. The so far existing and planned network-EGTCs have been
explored. Out of these network-EGTCs two case studies – the E.G.T.C. Amphictyony and the
planned CETC-EGTC – have been examined in depth. Their characteristics have further been
compared with the information about EGTCs and non contiguous-cooperations in general.
It was found out that network-EGTCs show advantages from ordinary non-contiguous cooperations.
Additionally, it was discovered that network-EGTCs do not differ in their character as much
as it had been expected from EGTCs established in the cross-border cooperation. This applies
also to the establishment process as well as to the fulfilment of the instrument’s potentials. In
general all EGTCs show discrepancies between planning and practice. Only a few differences
have been discovered. Contrary to expectation network-EGTCs show only certain disadvantages
but also advantages compared to EGTCs in the cross-border cooperation.
This thesis delivers evidence that EGTCs are applicable in the transnational and interregional
cooperation when certain preconditions are fulfilled. Then they can contribute to a successful
transnational and interregional cooperation.
Recommendations were given to territorial non-contiguous cooperations that are considering to
establish an EGTC.
It is expected that more network-EGTCs will be established in the future due to the higher experience
and knowledge about network-EGTCs.Beate Caesardiplomhttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4047Tue, 07 Apr 2015 10:58:04 +0200Worst-Case Portfolio Optimization: Transaction Costs and Bubbles
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4045
In this thesis we extend the worst-case modeling approach as first introduced by Hua and Wilmott (1997) (option pricing in discrete time) and Korn and Wilmott (2002) (portfolio optimization in continuous time) in various directions.
In the continuous-time worst-case portfolio optimization model (as first introduced by Korn and Wilmott (2002)), the financial market is assumed to be under the threat of a crash in the sense that the stock price may crash by an unknown fraction at an unknown time. It is assumed that only an upper bound on the size of the crash is known and that the investor prepares for the worst-possible crash scenario. That is, the investor aims to find the strategy maximizing her objective function in the worst-case crash scenario.
In the first part of this thesis, we consider the model of Korn and Wilmott (2002) in the presence of proportional transaction costs. First, we treat the problem without crashes and show that the value function is the unique viscosity solution of a dynamic programming equation (DPE) and then construct the optimal strategies. We then consider the problem in the presence of crash threats, derive the corresponding DPE and characterize the value function as the unique viscosity solution of this DPE.
In the last part, we consider the worst-case problem with a random number of crashes by proposing a regime switching model in which each state corresponds to a different crash regime. We interpret each of the crash-threatened regimes of the market as states in which a financial bubble has formed which may lead to a crash. In this model, we prove that the value function is a classical solution of a system of DPEs and derive the optimal strategies.
Christoph Belakdoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4045Tue, 07 Apr 2015 10:17:10 +0200Optimal Multilevel Monte Carlo Algorithms for Parametric Integration and Initial Value Problems
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4044
We intend to find optimal deterministic and randomized algorithms for three related problems: multivariate integration, parametric multivariate integration, and parametric initial value problems. The main interest is concentrated on the question, in how far randomization affects the precision of an approximation. We want to understand when and to which extent randomized algorithms are superior to deterministic ones.
All problems are studied for Banach space valued input functions. The analysis of Banach space valued problems is motivated by the investigation of scalar parametric problems; these can be understood as particular cases of Banach space valued problems. The gain achieved by randomization depends on the underlying Banach space.
For each problem, we introduce deterministic and randomized algorithms and provide the corresponding convergence analysis.
Moreover, we also provide lower bounds for the general Banach space valued settings, and thus, determine the complexity of the problems. It turns out that the obtained algorithms are order optimal in the deterministic setting. In the randomized setting, they are order optimal for certain classes of Banach spaces, which includes the L_p spaces and any finite dimensional Banach space. For general Banach spaces, they are optimal up to an arbitrarily small gap in the order of convergence.Thomas Daundoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4044Tue, 07 Apr 2015 10:06:18 +0200Audio Interface for the Zedboard
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4034
This paper describes an audio interface written in VHDL, that connects the ADAU1761 audio codec on the Zedboard to the Zynq PL. Audio signals can be received in stereo from the line in jack and/or transmitted to the headphone out jack.Stefan Schollotherhttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4034Wed, 25 Mar 2015 11:35:53 +0100Modern dehydrogenative amination reactions
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4037
Nitrogen element is preponderant in Nature. Found in its simplest form as diatomic gas in the air, as well as in elaborated molecules such as the double helix of DNA, this element is indisputably essential for life. Indeed, nitrogen is omnipresent in all metabolic pathways.
With the advent of green chemistry, researchers attempt to functionalize arenes without pre-functionalization of the later for the establishment of C-C bond formation. Why not C-N bond formation?
We investigated new oxidative amination reactions by cross-dehydrogenative-coupling. Concerned by atom economy and green processes, our objectives were: 1) to obviate pre-activation or pre-oxidation of both C-H coupling partner and N-aminating agent. 2) to avoid the use of chelating directing group.
We achieved C-N bond formation for some classes of amines. Thus, we will describe the reactivity of cyclic secondary amines: carbazole, in presence of catalytic amount of ruthenium (II) and copper (II) to build the challenging C-N bond between two carbazoles. The initial mechanistic experiments will be present and discuss.
Then, we will describe more challenging hetero-coupling formation between diarylamines and carbazoles. The new ruthenium (II)/ copper (II) catalytic system allowed forming the ortho-N-carbazolation of diarylamines. This reaction performed under mild conditions (O2 as terminal oxidant) displays an unusual intramolecular N-H••N interaction in the novel class of compounds.
Finally, we will present a surprising metal free C-N bond formation between the ubiquitous phenols and the phenothiazines. Initially conducted in the presence of transition metals (RuII/CuII), this reaction proved to be efficient with the only effect of cumene and O2. Those components suggest a mechanism initiated by a Hock process. An initial infra-red analysis might point out a strong intramolecular O-H••N interaction in the resulting products.
These first elements of reactivity, developed within the laboratory for “modern dehydrogenative amination reactions”, will be presented and discussed.
Marie-Laure Louillat Habermeyerdoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4037Wed, 25 Mar 2015 11:25:07 +0100Certification-Cognizant Mixed-Criticality Scheduling in Time-Triggered Systems
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4030
In embedded systems, there is a trend of integrating several different functionalities on a common platform. This has been enabled by increasing processing power and the arise of integrated system-on-chips.
The composition of safety-critical and non-safety-critical applications results in mixed-criticality systems. Certification Authorities (CAs) demand the certification of safety-critical applications with strong confidence in the execution time bounds. As a consequence, CAs use conservative assumptions in the worst-case execution time (WCET) analysis which result in more pessimistic WCETs than the ones used by designers. The existence of certified safety-critical and non-safety-critical applications can be represented by dual-criticality systems, i.e., systems with two criticality levels.
In this thesis, we focus on the scheduling of mixed-criticality systems which are subject to certification. Scheduling policies cognizant of the mixed-criticality nature of the systems and the certification requirements are needed for efficient and effective scheduling. Furthermore, we aim at reducing the certification costs to allow faster modification and upgrading, and less error-prone certification. Besides certification aspects, requirements of different operational modes result in challenging problems for the scheduling process. Despite the mentioned problems, schedulers require a low runtime overhead for an efficient execution at runtime.
The presented solutions are centered around time-triggered systems which feature a low runtime overhead. We present a transformation to include event-triggered activities, represented by sporadic tasks, already into the offline scheduling process. Further, this transformation can also be applied on periodic tasks to shorten the length of schedule tables which reduces certification costs. These results can be used in our method to construct schedule tables which creates two schedule tables to fulfill the requirements of dual-criticality systems using mode changes at runtime. Finally, we present a scheduler based on the slot-shifting algorithm for mixed-criticality systems. In a first version, the method schedules dual-criticality jobs without the need for mode changes. An already certified schedule table can be used and at runtime, the scheduler reacts to the actual behavior of the jobs and thus, makes effective use of the available resources. Next, we extend this method to schedule mixed-criticality job sets with different operational modes. As a result, we can schedule jobs with varying parameters in different modes.Jens Theisdoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4030Mon, 23 Mar 2015 12:38:23 +0100SAHARA - A Structured Approach for Hazard Analysis and Risk Assessments
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4027
In this thesis, an approach is presented that turns the currently unstructured process of automotive hazard analysis and risk assessments (HRA), which relies on creativity techniques, into a structured, model-based approach that makes the HRA results less dependent on experts' experience, more consistent, and gives them higher quality. The challenge can be subdivided into two steps. The first step is to improve the HRA as it is performed in current practice. The second step is to go beyond the current practice and consider not only single service failures as relevant hazards, but also multiple service failures. For the first step, the most important aspect is to formalize the operational situation of the system and to determine its likelihood. Current approaches use natural-language textual descriptions, which makes it hard to ensure consistency and increase efficiency through reuse. Furthermore, due to ambiguity in natural language, it is difficult to ensure consistent likelihood estimates for situations.
The main aspect of the second step is that considering multiple service failures as hazards implies that one needs to analyze an exponential number of hazards. Due to the fact that hazard assessments are currently done purely manually, considering multiple service failures is not possible. The only way to approach this challenge is to formalize the HRA and make extensive use of automation support.
In SAHARA we handle these challenges by first introducing a model-based representation of an HRA with GOBI. Based on this, we formalized the representation of operational situations and their likelihood assessment in OASIS and HEAT, respectively. We show that more consistent situation assessments are possible and that situations (including their likelihood) can be efficiently reused. The second aspect, coping with multiple service failures, is addressed in ARID. We show that using our tool-supported HRA approach, 100% coverage of all possible hazards (including multiple service failures) can be achieved by relying on very limited manual effort. We furthermore show that not considering multiple service failures results in insufficient safety goals.Sören Kemmanndoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4027Wed, 18 Mar 2015 11:15:06 +0100Visual Learning of Socio-Video Semantics
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4023
Today's ubiquity of visual content as driven by the availability of broadband Internet, low-priced storage, and the omnipresence of camera equipped mobile devices conveys much of our thinking and feeling as individuals and as a society. As a result the growth of video repositories is increasing at enourmous rates with content now being embedded and shared through social media. To make use of this new form of social multimedia, concept detection, the automatic mapping of semantic concepts and video content has to be extended such that concept vocabularies are synchronized with current real-world events, systems can perform scalable concept learning with thousands of concepts, and high-level information such as sentiment can be extracted from visual content. To catch up with these demands the following three contributions are made in this thesis: (i) concept detection is linked to trending topics, (ii) visual learning from web videos is presented including the proper treatment of tags as concept labels, and (iii) the extension of concept detection with adjective noun pairs for sentiment analysis is proposed.
In order for concept detection to satisfy users' current information needs, the notion of fixed concept vocabularies has to be reconsidered. This thesis presents a novel concept learning approach built upon dynamic vocabularies, which are automatically augmented with trending topics mined from social media. Once discovered, trending topics are evaluated by forecasting their future progression to predict high impact topics, which are then either mapped to an available static concept vocabulary or trained as individual concept detectors on demand. It is demonstrated in experiments on YouTube video clips that by a visual learning of trending topics, improvements of over 100% in concept detection accuracy can be achieved over static vocabularies (n=78,000).
To remove manual efforts related to training data retrieval from YouTube and noise caused by tags being coarse, subjective and context-depedent, this thesis suggests an automatic concept-to-query mapping for the retrieval of relevant training video material, and active relevance filtering to generate reliable annotations from web video tags. Here, the relevance of web tags is modeled as a latent variable, which is combined with an active learning label refinement. In experiments on YouTube, active relevance filtering is found to outperform both automatic filtering and active learning approaches, leading to a reduction of required label inspections by 75% as compared to an expert annotated training dataset (n=100,000).
Finally, it is demonstrated, that concept detection can serve as a key component to infer the sentiment reflected in visual content. To extend concept detection for sentiment analysis, adjective noun pairs (ANP) as novel entities for concept learning are proposed in this thesis. First a large-scale visual sentiment ontology consisting of 3,000 ANPs is automatically constructed by mining the web. From this ontology a mid-level representation of visual content – SentiBank – is trained to encode the visual presence of 1,200 ANPs. This novel approach of visual learning is validated in three independent experiments on sentiment prediction (n=2,000), emotion detection (n=807) and pornographic filtering (n=40,000). SentiBank is shown to outperform known low-level feature representations (sentiment prediction, pornography detection) or perform comparable to state-of-the art methods (emotion detection).
Altogether, these contributions extend state-of-the-art concept detection approaches such that concept learning can be done autonomously from web videos on a large-scale, and can cope with novel semantic structures such as trending topics or adjective noun pairs, adding a new dimension to the understanding of video content.Damian Borthdoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4023Wed, 18 Mar 2015 10:50:50 +0100Statistical Language Modeling for Historical Documents using Weighted Finite-State Transducers and Long Short-Term Memory
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4022
The goal of this work is to develop statistical natural language models and processing techniques
based on Recurrent Neural Networks (RNN), especially the recently introduced Long Short-
Term Memory (LSTM). Due to their adapting and predicting abilities, these methods are more
robust, and easier to train than traditional methods, i.e., words list and rule-based models. They
improve the output of recognition systems and make them more accessible to users for browsing
and reading. These techniques are required, especially for historical books which might take
years of effort and huge costs to manually transcribe them.
The contributions of this thesis are several new methods which have high-performance computing and accuracy. First, an error model for improving recognition results is designed. As
a second contribution, a hyphenation model for difficult transcription for alignment purposes
is suggested. Third, a dehyphenation model is used to classify the hyphens in noisy transcription. The fourth contribution is using LSTM networks for normalizing historical orthography.
A size normalization alignment is implemented to equal the size of strings, before the training
phase. Using the LSTM networks as a language model to improve the recognition results is
the fifth contribution. Finally, the sixth contribution is a combination of Weighted Finite-State
Transducers (WFSTs), and LSTM applied on multiple recognition systems. These contributions
will be elaborated in more detail.
Context-dependent confusion rules is a new technique to build an error model for Optical
Character Recognition (OCR) corrections. The rules are extracted from the OCR confusions
which appear in the recognition outputs and are translated into edit operations, e.g., insertions,
deletions, and substitutions using the Levenshtein edit distance algorithm. The edit operations
are extracted in a form of rules with respect to the context of the incorrect string to build an
error model using WFSTs. The context-dependent rules assist the language model to find the
best candidate corrections. They avoid the calculations that occur in searching the language
model and they also make the language model able to correct incorrect words by using context-
dependent confusion rules. The context-dependent error model is applied on the university of
Washington (UWIII) dataset and the Nastaleeq script in Urdu dataset. It improves the OCR
results from an error rate of 1.14% to an error rate of 0.68%. It performs better than the
state-of-the-art single rule-based which returns an error rate of 1.0%.
This thesis describes a new, simple, fast, and accurate system for generating correspondences
between real scanned historical books and their transcriptions. The alignment has many challenges, first, the transcriptions might have different modifications, and layout variations than the
original book. Second, the recognition of the historical books have misrecognition, and segmentation errors, which make the alignment more difficult especially the line breaks, and pages will
not have the same correspondences. Adapted WFSTs are designed to represent the transcription. The WFSTs process Fraktur ligatures and adapt the transcription with a hyphenations
model that allows the alignment with respect to the varieties of the hyphenated words in the line
breaks of the OCR documents. In this work, several approaches are implemented to be used for
the alignment such as: text-segments, page-wise, and book-wise approaches. The approaches
are evaluated on German calligraphic (Fraktur) script historical documents dataset from “Wan-
derungen durch die Mark Brandenburg” volumes (1862-1889). The text-segmentation approach
returns an error rate of 2.33% without using a hyphenation model and an error rate of 2.0%
using a hyphenation model. Dehyphenation methods are presented to remove the hyphen from
the transcription. They provide the transcription in a readable and reflowable format to be used
for alignment purposes. We consider the task as classification problem and classify the hyphens
from the given patterns as hyphens for line breaks, combined words, or noise. The methods are
applied on clean and noisy transcription for different languages. The Decision Trees classifier
returns better performance on UWIII dataset and returns an accuracy of 98%. It returns 97%
on Fraktur script.
A new method for normalizing historical OCRed text using LSTM is implemented for different texts, ranging from Early New High German 14th - 16th centuries to modern forms in New
High German applied on the Luther bible. It performed better than the rule-based word-list
approaches. It provides a transcription for various purposes such as part-of-speech tagging and
n-grams. Also two new techniques are presented for aligning the OCR results and normalize the
size by using adding Character-Epsilons or Appending-Epsilons. They allow deletion and insertion in the appropriate position in the string. In normalizing historical wordforms to modern
wordforms, the accuracy of LSTM on seen data is around 94%, while the state-of-the-art combined rule-based method returns 93%. On unseen data, LSTM returns 88% and the combined
rule-based method returns 76%. In normalizing modern wordforms to historical wordforms, the
LSTM delivers the best performance and returns 93.4% on seen data and 89.17% on unknown
data.
In this thesis, a deep investigation has been done on constructing high-performance language
modeling for improving the recognition systems. A new method to construct a language model
using LSTM is designed to correct OCR results. The method is applied on UWIII and Urdu
script. The LSTM approach outperforms the state-of-the-art, especially for unseen tokens
during training. On the UWIII dataset, the LSTM returns reduction in OCR error rates from
1.14% to 0.48%. On the Nastaleeq script in Urdu dataset, the LSTM reduces the error rate
from 6.9% to 1.58%.
Finally, the integration of multiple recognition outputs can give higher performance than a
single recognition system. Therefore, a new method for combining the results of OCR systems is
explored using WFSTs and LSTM. It uses multiple OCR outputs and votes for the best output
to improve the OCR results. It performs better than the ISRI tool, Pairwise of Multiple Sequence and it helps to improve the OCR results. The purpose is to provide correct transcription
so that it can be used for digitizing books, linguistics purposes, N-grams, and part-of-speech
tagging. The method consists of two alignment steps. First, two recognition systems are aligned
using WFSTs. The transducers are designed to be more flexible and compatible with the different symbols in line and page breaks to avoid the segmentation and misrecognition errors.
The LSTM model then is used to vote the best candidate correction of the two systems and
improve the incorrect tokens which are produced during the first alignment. The approaches
are evaluated on OCRs output from the English UWIII and historical German Fraktur dataset
which are obtained from state-of-the-art OCR systems. The Experiments show that the error
rate of ISRI-Voting is 1.45%, the error rate of the Pairwise of Multiple Sequence is 1.32%, the
error rate of the Line-to-Page alignment is 1.26% and the error rate of the LSTM approach has
the best performance with 0.40%.
The purpose of this thesis is to contribute methods providing correct transcriptions corresponding to the original book. This is considered to be the first step towards an accurate and
more effective use of the documents in digital libraries.
Mayce Al Azawidoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4022Thu, 12 Mar 2015 14:57:16 +0100Context Awareness for Enhancing Heterogeneous Access Management and Self-Optimizing Networks
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4021
The heterogeneity of today's access possibilities to wireless networks imposes challenges for efficient mobility support and resource management across different Radio Access Technologies (RATs). The current situation is characterized by the coexistence of various wireless communication systems, such as GSM, HSPA, LTE, WiMAX, and WLAN. These RATs greatly differ with respect to coverage, spectrum, data rates, Quality of Service (QoS), and mobility support.
In real systems, mobility-related events, such as Handover (HO) procedures, directly affect resource efficiency and End-To-End (E2E) performance, in particular with respect to signaling efforts and users' QoS. In order to lay a basis for realistic multi-radio network evaluation, a novel evaluation methodology is introduced in this thesis.
A central hypothesis of this thesis is that the consideration and exploitation of additional information characterizing user, network, and environment context, is beneficial for enhancing Heterogeneous Access Management (HAM) and Self-Optimizing Networks (SONs). Further, Mobile Network Operator (MNO) revenues are maximized by tightly integrating bandwidth adaptation and admission control mechanisms as well as simultaneously accounting for user profiles and service characteristics. In addition, mobility robustness is optimized by enabling network nodes to tune HO parameters according to locally observed conditions.
For establishing all these facets of context awareness, various schemes and algorithms are developed and evaluated in this thesis. System-level simulation results demonstrate the potential of context information exploitation for enhancing resource utilization, mobility support, self-tuning network operations, and users' E2E performance.
In essence, the conducted research activities and presented results motivate and substantiate the consideration of context awareness as key enabler for cognitive and autonomous network management. Further, the performed investigations and aspects evaluated in the scope of this thesis are highly relevant for future 5G wireless systems and current discussions in the 5G infrastructure Public Private Partnership (PPP).Andreas Kleindoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4021Wed, 11 Mar 2015 09:20:39 +0100Context-Enabled Optimization of Energy-Autarkic Networks for Carrier-Grade Wireless Backhauling
https://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4020
This work establishes the novel category of coordinated Wireless Backhaul Networks (WBNs) for energy-autarkic point-to-point radio backhauling. The networking concept is based on three major building blocks: cost-efficient radio transceiver hardware, a self-organizing network operations framework, and power supply from renewable energy sources. The aim of this novel backhauling approach is to combine carrier-grade network performance with reduced maintenance effort as well as independent and self-sufficient power supply. In order to facilitate the success prospects of this concept, the thesis comprises the following major contributions: Formal, multi-domain system model and evaluation methodology
First, adapted from the theory of cyber-physical systems, the author devises a multi-domain evaluation methodology and a system-level simulation framework for energy-autarkic coordinated WBNs, including a novel balanced scorecard concept. Second, the thesis specifically addresses the topic of Topology Control (TC) in point-to-point radio networks and how it can be exploited for network management purposes. Given a set of network nodes equipped with multiple radio transceivers and known locations, TC continuously optimizes the setup and configuration of radio links between network nodes, thus supporting initial network deployment, network operation, as well as topology re-configuration. In particular, the author shows that TC in WBNs belongs to the class of NP-hard quadratic assignment problems and that it has significant impact in operational practice, e.g., on routing efficiency, network redundancy levels, service reliability, and energy consumption. Two novel algorithms focusing on maximizing edge connectivity of network graphs are developed.
Finally, this work carries out an analytical benchmarking and a numerical performance analysis of the introduced concepts and algorithms. The author analytically derives minimum performance levels of the the developed TC algorithms. For the analyzed scenarios of remote Alpine communities and rural Tanzania, the evaluation shows that the algorithms improve energy efficiency and more evenly balance energy consumption across backhaul nodes, thus significantly increasing the number of available backhaul nodes compared to state-of-the-art TC algorithms.Christian Mannweilerdoctoralthesishttps://kluedo.ub.uni-kl.de/frontdoor/index/index/docId/4020Tue, 10 Mar 2015 12:22:33 +0100