Gröbner bases and algebraic geometry

  • After the notion of Gröbner bases and an algorithm for constructing them was introduced by Buchberger [Bu1, Bu2] algebraic geometers have used Gröbner bases as the main computational tool for many years, either to prove a theorem or to disprove a conjecture or just to experiment with examples in order to obtain a feeling about the structure of an algebraic variety. Nontrivial problems coming either from logic, mathematics or applications usually lead to nontrivial Gröbner basis computations, which is the reason why several improvements have been provided by many people and have been implemented in general purpose systems like Axiom, Maple, Mathematica, Reduce, etc., and systems specialized for use in algebraic geometry and commutative algebra like CoCoA, Macaulay and Singular. The present paper starts with an introduction to some concepts of algebraic geometry which should be understood by people with (almost) no knowledge in this field. In the second chapter we introduce standard bases (generalization of Gr"obner bases to non-well-orderings), which are needed for applications to local algebraic geometry (singularity theory), and a method for computing syzygies and free resolutions. The last chapter describes a new algorithm for computing the normalization of a reduced affine ring and gives an elementary introduction to singularity theory. Then we describe algorithms, using standard bases, to compute infinitesimal deformations and obstructions, which are basic for the deformation theory of isolated singularities. It is impossible to list all papers where Gr"obner bases have been used in local and global algebraic geometry, and even more impossible to give an overview about these contributions. We have, therefore, included only references to papers mentioned in this tutorial paper. The interested reader will find many more in the other contributions of this volume and in the literature cited there.

Download full text files

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author:Gert-Martin Greuel, Gerhard Pfister
URN:urn:nbn:de:hbz:386-kluedo-7525
Document Type:Preprint
Language of publication:English
Year of Completion:1999
Year of first Publication:1999
Publishing Institution:Technische Universität Kaiserslautern
Date of the Publication (Server):2000/04/03
Faculties / Organisational entities:Kaiserslautern - Fachbereich Mathematik
DDC-Cassification:5 Naturwissenschaften und Mathematik / 510 Mathematik
Licence (German):Standard gemäß KLUEDO-Leitlinien vor dem 27.05.2011