• search hit 24 of 0
Back to Result List

Influence of breakfast consumption on the chlorogenic acid metabolism in humans

  • Chlorogenic acids (CGA) are phenolic compounds that form during the esterification of certain trans-cinnamic acids with (-)-quinic acid. According to several human intervention studies, they may have potential health benefits. Coffee is the main source of CGA in human nutrition, and is consumed either alone or in combination with a variety of foods. For this reason, the presented study aimed to clarify whether the simultaneous consumption of food, for example, a breakfast rich in carbohydrates, with instant coffee affects the absorption and bioavailability of CGA. The research specifically focused on how various food matrices, which are consumed at the same time as a coffee beverage, will influence kinetic parameters such as area under the curve (AUC), maximum plasma concentration (cmax), and time needed to reach maximum plasma concentration (tmax). In a randomized crossover study, fourteen healthy participants consumed either pure instant coffee or coffee with a carbohydrate- or fat-rich meal. All of the subjects consumed the same quantity of CGA (3.1 mg CGA/kg body weight). Blood samples, collected at various time points up to 15 h after instant coffee consumption, were quantitatively analysed. Additionally, three urine collection intervals were chosen over a time period of 24h. High performance liquid chromatography electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) was used to determine the CGA present, along with the concentrations of respective metabolites. During a blind data review meeting, 20 of the 56 analysed plasma metabolites were chosen for further statistical analysis. A total of 36 metabolites were monitored in the urine samples. Similar as in the plasma samples, between-treatment differences, measured through AUC, Cmax, and tmax, of various CGA derived metabolites were to estimate. Each treatment was also analysed in terms of the correlation between the plasma AUC and urinary excretion of seven metabolites. It is already known that inter-individual variations in CGA absorption depends on gut microbial degradation and affects the efficacy of these compounds. Microorganisms present in the gastrointestinal tract metabolise CGA to form dihydroferulic acid (DHFA) and dihydrocaffeic acid (DHCA) derivatives, which precede the subsequent formation of a wide range of metabolites. Therefore stool samples were collected from the participants within 12 h before the second study day. Subsequent an ex-vivo incubation of faecal samples with 5-O-caffeoylquinic acid (5-CQA), the main chlorogenic acid found in coffee was performed. An HPLC system connected to a CoulArray® detector was used to measure the concentrations of 5-CQA and its metabolites. Reduced concentrations of 5-CQA as well as the appearance of DHCA and caffeic acid (CA) in the gut microbiota medium, were monitored to calculate the inter-individual kinetics for each compound. In addition, these samples were analysed for microbiota content by an external laboratory (L&S, Bad Bocklet, Germany). These results were used to distinguish whether the decreased or increased content of a specific microorganism was related to an individual’s decreased or increased metabolic efficiency. Finally, we used to aforementioned results to evaluate if any correlation could be drawn between the plasma appearance, urinary excretion and ability of microorganisms to degrade 5-CQA. Strong inter-individual variation was observed for AUC, Cmax and tmax. The AUC measured the quantity of CGA in plasma samples. We noted that pure instant coffee consumption resulted in slightly higher CGA bioavailability than instant coffee with the additional consumption of a meal. However, these differences were not statistically significant. Additionally, the metabolites were divided into groups, according to similarity and chemical properties. They were further classified into three groups according to their physical structure and predicated from the area of appearance: directly from coffee (quinics), after first degradation and metabolism (phenolics, all trans-cinammic acids and their sulfates and glucuronides) as well as colonic degradation and metabolism (colonics, all dihydro compounds). These respective metabolic classes showed significant differences in the AUC values of certain classes yet no significant between-treatment differences. Our results corroborated earlier studies in that the three caffeoylquinic acid (CQA) isomers were absorbed to a lower extent whereas all feruloylquinic acids (FQA) were detected in comparably high amounts in the plasma samples of the volunteers. However, the amount of these quinic acid conjugates in the plasma samples accounted for only 0,5% of the total amount of identified. In contrast, at least 8.7% of the investigated compounds were identified to be phenolics. Dihydro compounds, the so known colonics, were identified as the most common metabolites (90.8%). Additionally, dihydroferulic acid (DHFA), meta-dihydrocoumaric acid (mDHCoA), dihydrocaffeic acid-3-sulfate (DHCA3S) and dihydroisoferulic acid (DHiFA) were identified to account for 78% of the studied metabolites, and thus represent the most abundant compounds circulating in the plasma after coffee consumption. Irrespective of treatment, the tmax value for early metabolites (quinic and phenolic compounds) was observed between 0 and 2 h after the ingestion of coffee and tmax value for late metabolites (colonic metabolites) was observed between 7 and 10 h. The amount of colonic metabolites had not returned to the baseline level 15 h after the ingestion of coffee. The co-ingestion of breakfast and coffee, when compared to the ingestion of coffee alone, significantly increased the Cmax values for all quinic and phenolic compounds, as well as two colonic metabolites (DHCA and DHiFA). These differences also revealed that the three treatments differed in terms of the kinetics of release. Thus, future studies should use an extended plasma collection time with shorter intervals (e.g. 2 h) to provide a full pharmacokinetic profile. There were no statistically significant between-treatment differences in the urine samples collected 24 h after coffee ingestion. However, urine samples collected within six hours of the consumption of coffee alone or in combination with a fat-rich meal showed significantly higher CGA quantities than samples collected at the same time point for coffee ingested with a carbohydrate-rich. Strong inter-individual variability and the fact that only 14 healthy subjects participated in the study hindered the identification of any clear trend between the plasma concentrations of metabolites and their excretion in urine. Four hours after the ex vivo incubation of 5-CQA with individual faecal samples the sum of 5-CQA, CA, and DHCA varied strongly between participants. These findings could result from binding effects of the phenolic compounds with faecal constituents, further degradation or metabolism, and/or the release of bound phenolic substances before the experiment started. We hypothesized that for participants with high plasma AUCs of dihydro compounds, their incubation samples show also high concentrations of CA and DHCA in the incubation medium after four hours. No significant correlation could be found. This study and all of the outcomes were exploratory. Due to the limited number of participants, we could only investigate tendencies for how the co-ingestion of food affects the bioavailability of CGAs and their respective metabolites following coffee consumption. Therefore, the achieved results are only indicative. Despite this limitation, the data highlight that even though all three treatments had strong similarities in the total bioavailability of CGAs and metabolites from instant coffee, there were between-treatment differences in the kinetics of release. The co-ingestion of breakfast and coffee favoured a slow and continuous release of colonic metabolites while non-metabolized coffee components were observed in plasma within the first hour when coffee was ingested alone. In conclusion, both a shift in gastrointestinal transit time and the plasma metabolite composition were observed when the ingestion of coffee alone or in combination with breakfast were compared. These results showed that breakfast consumption induces the retarded release of chlorogenic acid metabolites in humans. The data from our human intervention study suggest that the bioavailability of chlorogenic acids from coffee and their derivatives does not only depend on chemical structure, molecular size and active or passive transport ability, but is also influenced by inter-individual differences. Therefore, we strongly recommend that future studies include metabolism experiments that focus on microbiota genotypes and/or the genotyping of individual subjects. This type of research could be pivotal to elucidating whether, and how, genotype affects the metabolic profile after chlorogenic acid intake.

Download full text files

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author:Denise Scherbl
URN:urn:nbn:de:hbz:386-kluedo-49218
Advisor:Elke Richling
Document Type:Doctoral Thesis
Language of publication:English
Date of Publication (online):2017/10/23
Year of first Publication:2017
Publishing Institution:Technische Universität Kaiserslautern
Granting Institution:Technische Universität Kaiserslautern
Acceptance Date of the Thesis:2017/10/19
Date of the Publication (Server):2017/11/06
Page Number:XXV, 201
Faculties / Organisational entities:Kaiserslautern - Fachbereich Chemie
DDC-Cassification:5 Naturwissenschaften und Mathematik / 540 Chemie
Licence (German):Creative Commons 4.0 - Namensnennung, nicht kommerziell, keine Bearbeitung (CC BY-NC-ND 4.0)