The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 5 of 6
Back to Result List

Manipulating Deformable Linear Objects: Model-Based Adjustment-Motion for Vibration Reduction

  • This paper addresses the problem of handling deformable linear objects (DLOs) in a suitable way to avoid acute vibration. An adjustment-motion that eliminates vibration of DLOs and can be attached to the end of any arbitrary end-effector's trajectory is presented, based on the concept of open-loop control. The presented adjustment-motion is a kind of agile end-effector motion with limited scope. To describe the dynamics of deformable linear objects, the finite element method is used to derive the dynamic differential equations. Genetic algorithm is used to find the optimal adjustment-motion for each simulation example. In contrast to previous approaches, the presented method can be treated as one of the manipulation skills and can be applied to different cases without major changes to the method.

Download full text files

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author:Shigang Yue, Dominik Henrich
URN:urn:nbn:de:hbz:386-kluedo-11564
Document Type:Preprint
Language of publication:English
Year of Completion:2001
Year of first Publication:2001
Publishing Institution:Technische Universität Kaiserslautern
Date of the Publication (Server):2001/06/12
Tag:AG-RESY; RODEO
Faculties / Organisational entities:Kaiserslautern - Fachbereich Informatik
DDC-Cassification:0 Allgemeines, Informatik, Informationswissenschaft / 004 Informatik
Collections:AG RESY
Licence (German):Standard gemäß KLUEDO-Leitlinien vor dem 27.05.2011