• search hit 18 of 0
Back to Result List

Palladium-Catalyzed C–C Bond Formations via Activation of Carboxylic Acids and Their Derivatives

  • Applications of carboxylic acids and their derivatives in transition metal-catalyzed cross-coupling reactions regio-selectively forming Csp3-Csp2, and Csp2-Csp2 bonds were explored in this thesis. Several important organic building blocks such as aryl acetates, diaryl acetates, imines, ketones, biaryls, styrenes and polysubstituted alkenes were successfully accessed from carboxylic acids and their derivatives by the means of C–H activation and decarboxylative cross-couplings. An efficient and practical protocol for the synthesis of biologically important ethyl 2-arylacates through the dealkoxycarbonlative cross-coupling reaction between aryl halides and malonates was developed. Activation of the alpha-proton of alkyl esters by a copper catalyst allowed the deprotonation of esters even in the presence of mild bases, leading to a straightforward and efficient approach to alkyl alpha-diarylacetate from simple alkyl acetates and aryl halides. The addition of a primary amine into the coupling reaction of alpha-oxocarboxylic acids and aryl halides led to an unprecedented low-temperature redox-neutral decarboxylative coupling process, providing a green and efficient method for the preparation of azomethines, in which all the three substituents can be independently varied. A minor modification of this protocol allowed us to easily access the corresponding ketones. The decarboxylative coupling of robust aryl mesylates as well as polysubstituted alkenyl mesylates using our customized imidazolyl phosphine ligands was realized, further expanding the scope of carbon electrophiles in decarboxylative coupling reactions. Variation of the ligands led to two complementary protocols, providing the corresponding biaryls and polysubstituted olefins in high yields. The use of a new class of pyrimidinyl phosphine ligands dramatically reduced the reaction temperatures of decarboxylative cross-coupling reactions between aromatic carboxylic acids and aryl or alkenyl triflates. The new catalyst system for the first time allowed the efficient decarboxylative biaryls synthesis at only 100 °C, representing a significant achievement in redox-neutral decarboxylative coupling reactions.

Download full text files

Export metadata

Metadaten
Author:Bingrui Song
URN:urn:nbn:de:hbz:386-kluedo-34878
Advisor:Lukas J. Gooßen
Document Type:Doctoral Thesis
Language of publication:English
Date of Publication (online):2013/04/16
Year of first Publication:2013
Publishing Institution:Technische Universität Kaiserslautern
Granting Institution:Technische Universität Kaiserslautern
Acceptance Date of the Thesis:2013/04/09
Date of the Publication (Server):2013/04/17
Page Number:XVI, 293
Faculties / Organisational entities:Kaiserslautern - Fachbereich Chemie
DDC-Cassification:5 Naturwissenschaften und Mathematik / 540 Chemie
Licence (German):Standard gemäß KLUEDO-Leitlinien vom 10.09.2012