The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 76 of 5008
Back to Result List

Photoionization Suppression by Continuum Coherence: Experiment and Theory

  • Abstract: We present experimental and theoretical results of a detailed study of laser-induced continuum structures (LICS) in the photoionization continuum of helium out of the metastable state 2s^1 S_0. The continuum dressing with a 1064 nm laser, couples the same region of the continuum to the 4s^1 S_0 state. The experimental data, presented for a range of intensities, show pronounced ionization suppression (by asmuch as 70% with respect to the far-from-resonance value) as well as enhancement, in a Beutler-Fano resonance profile. This ionization suppression is a clear indication of population trapping mediated by coupling to a contiuum. We present experimental results demonstrating the effect of pulse delay upon the LICS, and for the behavior of LICS for both weak and strong probe pulses. Simulations based upon numerical solution of the Schrödinger equation model the experimental results. The atomic parameters (Rabi frequencies and Stark shifts) are calculated using a simple model-potential method for the computation of the needed wavefunctions. The simulations of the LICS profiles are in excellent agreement with experiment. We also present an analytic formulation of pulsed LICS. We show that in the case of a probe pulse shorter than the dressing one the LICS profile is the convolution of the power spectra of the probe pulse with the usual Fano profile of stationary LICS. We discuss some consequences of deviation from steady-state theory.

Download full text files

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author:L.P. Yatsenko, T. Halfmann, B.W. Shore, K. Bergmann
URN:urn:nbn:de:hbz:386-kluedo-11466
Document Type:Preprint
Language of publication:English
Year of Completion:1999
Year of first Publication:1999
Publishing Institution:Technische Universität Kaiserslautern
Date of the Publication (Server):2001/05/09
Faculties / Organisational entities:Kaiserslautern - Fachbereich Physik
DDC-Cassification:5 Naturwissenschaften und Mathematik / 530 Physik
Licence (German):Standard gemäß KLUEDO-Leitlinien vor dem 27.05.2011