The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 4 of 5
Back to Result List

Weber s Problem with attraction and repulsion under Polyhedral Gauges

  • Given a finite set of points in the plane and a forbidden region R, we want to find a point X not an element of int(R), such that the weighted sum to all given points is minimized. This location problem is a variant of the well-known Weber Problem, where we measure the distance by polyhedral gauges and allow each of the weights to be positive or negative. The unit ball of a polyhedral gauge may be any convex polyhedron containing the origin. This large class of distance functions allows very general (practical) settings - such as asymmetry - to be modeled. Each given point is allowed to have its own gauge and the forbidden region R enables us to include negative information in the model. Additionally the use of negative and positive weights allows to include the level of attraction or dislikeness of a new facility. Polynomial algorithms and structural properties for this global optimization problem (d.c. objective function and a non-convex feasible set) based on combinatorial and geometrical methods are presented.

Download full text files

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author:Stefan Nickel, Eva Maria Dudenhöffer
URN:urn:nbn:de:hbz:386-kluedo-4893
Series (Serial Number):Report in Wirtschaftsmathematik (WIMA Report) (5)
Document Type:Preprint
Language of publication:English
Year of Completion:1999
Year of first Publication:1999
Publishing Institution:Technische Universität Kaiserslautern
Date of the Publication (Server):2000/04/03
Tag:Location Theory; discretization; geometrical algorithms; global optimization
Faculties / Organisational entities:Kaiserslautern - Fachbereich Mathematik
DDC-Cassification:5 Naturwissenschaften und Mathematik / 510 Mathematik
Licence (German):Standard gemäß KLUEDO-Leitlinien vor dem 27.05.2011