Optimierung des Betriebs von Kanalnetzen im Mischsystem auf Basis von Online-Messdaten

  • Der flächendeckende Ausbau der Kläranlagen in Deutschland hat in den letzten Jahrzehnten zu einer deutlichen Verbesserung der Gewässerqualität geführt. Dennoch ist der ökologische Zustand vieler Gewässer immer noch unbefriedigend. Einen negativen Einfluss auf den Gewässerzustand haben Stoßbelastungen aus Mischwassereinleitungen, die empfindliche aquatische Ökosysteme aufgrund von hydraulischem Stress und stofflichen Belastungen nachhaltig schädigen können. Diese Arbeit liefert einen Beitrag dazu, wie hoch aufgelöste Online-Messdaten zur Optimierung des Kanalnetzbetriebs genutzt werden können. Hierfür wurden zwei reale Regenüberlaufbecken (RÜB) im Mischsystem in Süddeutschland für zwei Jahre mit Online-Spektrometersonden zur Erfassung von Äquivalenzkonzentrationen von abfiltrierbaren Stoffen (AFS), chemischem Sauerstoffbedarf (CSB, gesamt und gelöst) und Nitrat ausgestattet. Zusätzlich wurden hydrometrische Messdaten an den RÜB vom Betreiber des Entwässerungssystems bereitgestellt. Den ersten Teil der Arbeit bilden Fracht- und Volumenauswertungen der Einstauereignisse an den beiden RÜB. Die Untersuchungen sollen zum besseren Verständnis der stoffspezifischen und hydraulischen Vorgänge im Mischsystem beitragen. Im zweiten Teil der Arbeit wird ein neuer Ansatz zur Verbesserung des Kanalnetzbetriebes unter direkter Verwendung von Messdaten erprobt. Für diese messdatenbasierte Simulation werden gemessene Ganglinien von Abflussmenge und Feststoffkonzentration direkt als Systeminput eines Transportmodells verwendet. Anhand dieses Modells werden verschiedene Kanalnetzbewirtschaftungsstrategien untersucht. Die folgenden Erkenntnisse lassen sich anhand der durchgeführten Auswertungen ableiten: Eine Vorhersage der Spülstoßintensitäten anhand der Charakteristiken der Trockenphasen vor den Ereignissen oder der Eigenschaften der Niederschlagsereignisse selbst ist im Untersuchungsgebiet nicht möglich. Eine konstante Akkumulation der Schmutzstoffe auf der Gebietsoberfläche, wie sie in gängigen Qualitätsmodellen angesetzt wird, ist in den Untersuchungsgebieten ebenso wenig vorhanden. Somit kann die Abflussqualität im Untersuchungsgebiet nicht zuverlässig simuliert werden. Betriebsentscheidungen, die auf Basis von Schmutzfrachtmodellen getroffen werden, sind demnach höchst unsicher. Die in dieser Arbeit neu vorgestellte messdatenbasierte Simulation umgeht diese Unsicherheiten und ersetzt sie durch die Messunsicherheiten selbst. Sie kann die Effizienz verschiedener Bewirtschaftungsstrategien, wie die Verwendung statisch optimierter Drosselabflüsse oder die dynamische Echtzeit-Steuerung von Speicherräumen, zuverlässig bewerten. Eine Dauer der zugrunde liegenden Messdatenzeitreihe von etwa vier Monaten mit mittlerer Niederschlagscharakteristik und etwa 10 Niederschlagsereignissen ist im untersuchten fiktiven System ausreichend für verlässliche Ergebnisse der messdatenbasierten Simulation. In komplexeren Gebieten kann der Datenbedarf höher sein. Die Methodik liefert unter Berücksichtigung der üblichen Messunsicherheiten robuste Ergebnisse.

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author:Anna Bachmann-MachnikORCiD
URN:urn:nbn:de:hbz:386-kluedo-58967
ISBN:978-3-95974-128-6
Series (Serial Number):Schriftenreihe Wasser Infrastruktur Ressourcen (7)
Advisor:Dittmer Ulrich
Document Type:Doctoral Thesis
Language of publication:German
Date of Publication (online):2020/02/14
Year of first Publication:2020
Publishing Institution:Technische Universität Kaiserslautern
Granting Institution:Technische Universität Kaiserslautern
Acceptance Date of the Thesis:2020/01/21
Date of the Publication (Server):2020/02/14
Tag:Kanalnetzsteuerung; Regenüberlaufbecken; UV/VIS Spektrometrie
Page Number:XI, 247
Faculties / Organisational entities:Kaiserslautern - Fachbereich Bauingenieurwesen
DDC-Cassification:6 Technik, Medizin, angewandte Wissenschaften / 624 Ingenieurbau und Umwelttechnik
Licence (German):Creative Commons 4.0 - Namensnennung (CC BY 4.0)