On a Combinatorial Problem in Group Theory

  • In this paper we continue the study of p - groups G of square order \(p^{2n}\) and investigate the existence of partial congruence partitions (sets of mutually disjoint subgroups of order \(p^n\)) in G. Partial congruence partitions are used to construct translation nets and partial difference sets, two objects studied extensively in finite geometries and combinatorics. We prove that the maximal number of mutually disjoint subgroups of order \(p^n\) in a group G of order \(p^{2n}\) cannot be more than \((p^{n-1}-1)(p-1)^{-1}\) provided that \(n\ge4\)and that G is not elementary abelian. This improves a result in [6] and as we do not distinguish the cases p=2 and p odd in the present paper, we also have a generalization of D. FROHARDT' s theorem on 2 - groups in [4]. Furthermore we study groups of order \(p^6\). We can show that for each odd prime number, there exist exactly four nonisomorphic groups which contain at least p+2 mutually disjoint subgroups of order \(p^3\). Again, as we do not distinguish between the even and the odd case in advance, we in particular obtain D. GLUCK' s and A. P. SPRAGUE' s classification of groups of order 64 which contain at least 4 mutually disjoint subgroups of order 8 in [5] and [13] respectively.

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Verfasserangaben:Dirk Hachenberger
URN (Permalink):urn:nbn:de:hbz:386-kluedo-50410
Schriftenreihe (Bandnummer):Preprints (rote Reihe) des Fachbereich Mathematik (208)
Sprache der Veröffentlichung:Englisch
Veröffentlichungsdatum (online):07.11.2017
Jahr der Veröffentlichung:1991
Veröffentlichende Institution:Technische Universität Kaiserslautern
Datum der Publikation (Server):07.11.2017
Fachbereiche / Organisatorische Einheiten:Fachbereich Mathematik
DDC-Sachgruppen:5 Naturwissenschaften und Mathematik / 510 Mathematik
Lizenz (Deutsch):Creative Commons 4.0 - Namensnennung, nicht kommerziell, keine Bearbeitung (CC BY-NC-ND 4.0)