Rubber Toughened and Nanoparticle Reinforced Epoxy Composites

  • Epoxy resins have achieved acceptance as adhesives, coatings, and potting compounds, but their main application is as matrix to produce reinforced composites. However, their usefulness in this field still limited due to their brittle nature. Some studies have been done to increase the toughness of epoxy composites, of which the most successful one is the modification of the polymer matrix with a second toughening phase. Resin Transfer Molding (RTM) is one of the most important technologies to manufacture fiber reinforced composites. In the last decade it has experimented new impulse, due to its favorable application to produce large surface composites with good technical properties and at relative low cost. This research work focuses on the development of novel modified epoxy matrices, with enhanced mechanical and thermal properties, suitable to be processed by resin transfer molding technology, to manufacture Glass Fiber Reinforced Composites (GFRC’s) with improved performance in comparison to the commercially available ones. In the first stage of the project, a neat epoxy resin (EP) was modified using two different nano-sized ceramics: silicium dioxide (SiO2) and zirconium dioxide (ZrO2); and micro-sized particles of silicone rubber (SR) as second filler. Series of nanocomposites and hybrid modified epoxy resins were obtained by systematic variation of filler contents. The rheology and curing process of the modified epoxy resins were determined in order to define their aptness to be processed by RTM. The resulting matrices were extensively characterized qualitatively and quantitatively to precise the effect of each filler on the polymer properties. It was shown that the nanoparticles confer better mechanical properties to the epoxy resin, including modulus and toughness. It was possible to improve simultaneously the tensile modulus and toughness of the epoxy matrix in more than 30 % and 50 % respectively, only by using 8 vol.-% nano-SiO2 as filler. A similar performance was obtained by nanocomposites containing zirconia. The epoxy matrix modified with 8 vol.-% ZrO2 recorded tensile modulus and toughness improved up to 36% and 45% respectively regarding EP. On the other hand, the addition of silicone rubber to EP and nanocomposites results in a superior toughness but has a slightly negative effect on modulus and strength. The addition of 3 vol.-% SR to the neat epoxy and nanocomposites increases their toughness between 1.5 and 2.5 fold; but implies also a reduction in their tensile modulus and strength in range 5-10%. Therefore, when the right proportion of nanoceramic and rubber were added to the epoxy resin, hybrid epoxy matrices with fracture toughness 3 fold higher than EP but also with up to 20% improved modulus were obtained. Widespread investigations were carried out to define the structural mechanisms responsible for these improvements. It was stated, that each type of filler induces specific energy dissipating mechanisms during the mechanical loading and fracture processes, which are closely related to their nature, morphology and of course to their bonding with the epoxy matrix. When both nanoceramic and silicone rubber are involved in the epoxy formulation, a superposition of their corresponding energy release mechanisms is generated, which provides the matrix with an unusual properties balance. From the modified matrices glass fiber reinforced RTM-plates were produced. The structure of the obtained composites was microscopically analyzed to determine their impregnation quality. In all cases composites with no structural defects (i.e. voids, delaminations) and good superficial finish were reached. The composites were also properly characterized. As expected the final performance of the GFRCs is strongly determined by the matrix properties. Thus, the enhancement reached by epoxy matrices is translated into better GFRC´s macroscopical properties. Composites with up to 15% enhanced strength and toughness improved up to 50%, were obtained from the modified epoxy matrices.

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author:Rosa María Medina Barrón
URN:urn:nbn:de:hbz:386-kluedo-47364
ISBN:978-3-934930-80-3
Series (Serial Number):IVW-Schriftenreihe (84)
Publisher:Institut für Verbundwerkstoffe GmbH
Place of publication:Kaiserslautern
Advisor:Klaus Friedrich
Document Type:Doctoral Thesis
Language of publication:English
Date of Publication (online):2017/08/09
Year of first Publication:2009
Publishing Institution:Technische Universität Kaiserslautern
Granting Institution:Technische Universität Kaiserslautern
Acceptance Date of the Thesis:2008/12/12
Date of the Publication (Server):2017/08/10
Page Number:XI, 129
Faculties / Organisational entities:Kaiserslautern - Fachbereich Maschinenbau und Verfahrenstechnik
DDC-Cassification:6 Technik, Medizin, angewandte Wissenschaften / 620 Ingenieurwissenschaften und Maschinenbau
Licence (German):Creative Commons 4.0 - Namensnennung, nicht kommerziell, keine Bearbeitung (CC BY-NC-ND 4.0)