Recursive Utility and Stochastic Differential Utility: From Discrete to Continuous Time

  • In this thesis, mathematical research questions related to recursive utility and stochastic differential utility (SDU) are explored. First, a class of backward equations under nonlinear expectations is investigated: Existence and uniqueness of solutions are established, and the issues of stability and discrete-time approximation are addressed. It is then shown that backward equations of this class naturally appear as a continuous-time limit in the context of recursive utility with nonlinear expectations. Then, the Epstein-Zin parametrization of SDU is studied. The focus is on specifications with both relative risk aversion and elasitcity of intertemporal substitution greater that one. A concave utility functional is constructed and a utility gradient inequality is established. Finally, consumption-portfolio problems with recursive preferences and unspanned risk are investigated. The investor's optimal strategies are characterized by a specific semilinear partial differential equation. The solution of this equation is constructed by a fixed point argument, and a corresponding efficient and accurate method to calculate optimal strategies numerically is given.

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Verfasserangaben:Thomas Seiferling
URN (Permalink):urn:nbn:de:hbz:386-kluedo-43808
Betreuer:Frank Thomas Seifried
Sprache der Veröffentlichung:Englisch
Veröffentlichungsdatum (online):22.05.2016
Jahr der Veröffentlichung:2016
Veröffentlichende Institution:Technische Universität Kaiserslautern
Titel verleihende Institution:Technische Universität Kaiserslautern
Datum der Annahme der Abschlussarbeit:28.04.2016
Datum der Publikation (Server):23.05.2016
Seitenzahl:XI, 207
Fachbereiche / Organisatorische Einheiten:Fachbereich Mathematik
DDC-Sachgruppen:5 Naturwissenschaften und Mathematik / 510 Mathematik
Lizenz (Deutsch):Standard gemäß KLUEDO-Leitlinien vom 30.07.2015