A Framework for Shape Optimization in the Context of Isogeometric Analysis

  • We develop a framework for shape optimization problems under state equation con- straints where both state and control are discretized by B-splines or NURBS. In other words, we use isogeometric analysis (IGA) for solving the partial differential equation and a nodal approach to change domains where control points take the place of nodes and where thus a quite general class of functions for representing optimal shapes and their boundaries becomes available. The minimization problem is solved by a gradient descent method where the shape gradient will be defined in isogeometric terms. This gradient is obtained following two schemes, optimize first–discretize then and, reversely, discretize first–optimize then. We show that for isogeometric analysis, the two schemes yield the same discrete system. Moreover, we also formulate shape optimization with respect to NURBS in the optimize first ansatz which amounts to finding optimal control points and weights simultaneously. Numerical tests illustrate the theory.

Volltext Dateien herunterladen

Metadaten exportieren

Verfasserangaben:Daniela Fußeder, Bernd Simeon, Anh-Vu Vuong
URN (Permalink):urn:nbn:de:hbz:386-kluedo-38330
Sprache der Veröffentlichung:Englisch
Veröffentlichungsdatum (online):23.07.2014
Jahr der Veröffentlichung:2014
Veröffentlichende Institution:Technische Universität Kaiserslautern
Datum der Publikation (Server):24.07.2014
Freies Schlagwort / Tag:NURBS; adjoint approach; isogeometric analysis; shape optimization; weight optimization
Quelle:Computer Methods in Applied Mechanics and Engineering, Band 286, 1. April 2015, Seiten 313-331, http://www.sciencedirect.com/science/article/pii/S0045782514005076
Fachbereiche / Organisatorische Einheiten:Fachbereich Mathematik
DDC-Sachgruppen:5 Naturwissenschaften und Mathematik / 510 Mathematik
Lizenz (Deutsch):Standard gemäß KLUEDO-Leitlinien vom 10.09.2012