Mining Complex Feature Correlations from Large Software Product Line Configurations

  • As a Software Product Line (SPL) evolves with increasing number of features and feature values, the feature correlations become extremely intricate, and the specifications of these correlations tend to be either incomplete or inconsistent with their realizations, causing misconfigurations in practice. In order to guide product configuration processes, we present a solution framework to recover complex feature correlations from existing product configurations. These correlations are further pruned automatically and validated by domain experts. During implementation, we use association mining techniques to automatically extract strong association rules as potential feature correlations. This approach is evaluated using a large-scale industrial SPL in the embedded system domain, and finally we identify a large number of complex feature correlations.

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Verfasserangaben:Bo Zhang
URN (Permalink):urn:nbn:de:hbz:386-kluedo-35013
Sprache der Veröffentlichung:Englisch
Veröffentlichungsdatum (online):04.03.2013
Jahr der Veröffentlichung:2013
Veröffentlichende Institution:Technische Universität Kaiserslautern
Datum der Publikation (Server):07.05.2013
Fachbereiche / Organisatorische Einheiten:Fachbereich Informatik
CCS-Klassifikation (Informatik):D. Software
DDC-Sachgruppen:0 Allgemeines, Informatik, Informationswissenschaft / 004 Informatik
Lizenz (Deutsch):Standard gemäß KLUEDO-Leitlinien vom 10.09.2012