Quadrature for Path-dependent Functionals of Lévy-driven Stochastic Differential Equations

  • The main topic of this thesis is to define and analyze a multilevel Monte Carlo algorithm for path-dependent functionals of the solution of a stochastic differential equation (SDE) which is driven by a square integrable, \(d_X\)-dimensional Lévy process \(X\). We work with standard Lipschitz assumptions and denote by \(Y=(Y_t)_{t\in[0,1]}\) the \(d_Y\)-dimensional strong solution of the SDE. We investigate the computation of expectations \(S(f) = \mathrm{E}[f(Y)]\) using randomized algorithms \(\widehat S\). Thereby, we are interested in the relation of the error and the computational cost of \(\widehat S\), where \(f:D[0,1] \to \mathbb{R}\) ranges in the class \(F\) of measurable functionals on the space of càdlàg functions on \([0,1]\), that are Lipschitz continuous with respect to the supremum norm. We consider as error \(e(\widehat S)\) the worst case of the root mean square error over the class of functionals \(F\). The computational cost of an algorithm \(\widehat S\), denoted \(\mathrm{cost}(\widehat S)\), should represent the runtime of the algorithm on a computer. We work in the real number model of computation and further suppose that evaluations of \(f\) are possible for piecewise constant functions in time units according to its number of breakpoints. We state strong error estimates for an approximate Euler scheme on a random time discretization. With this strong error estimates, the multilevel algorithm leads to upper bounds for the convergence order of the error with respect to the computational cost. The main results can be summarized in terms of the Blumenthal-Getoor index of the driving Lévy process, denoted by \(\beta\in[0,2]\). For \(\beta <1\) and no Brownian component present, we almost reach convergence order \(1/2\), which means, that there exists a sequence of multilevel algorithms \((\widehat S_n)_{n\in \mathbb{N}}\) with \(\mathrm{cost}(\widehat S_n) \leq n\) such that \( e(\widehat S_n) \precsim n^{-1/2}\). Here, by \( \precsim\), we denote a weak asymptotic upper bound, i.e. the inequality holds up to an unspecified positive constant. If \(X\) has a Brownian component, the order has an additional logarithmic term, in which case, we reach \( e(\widehat S_n) \precsim n^{-1/2} \, (\log(n))^{3/2}\). For the special subclass of $Y$ being the Lévy process itself, we also provide a lower bound, which, up to a logarithmic term, recovers the order \(1/2\), i.e., neglecting logarithmic terms, the multilevel algorithm is order optimal for \( \beta <1\). An empirical error analysis via numerical experiments matches the theoretical results and completes the analysis.

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Verfasserangaben:Felix Heidenreich
URN (Permalink):urn:nbn:de:hbz:386-kluedo-33604
Betreuer:Klaus Ritter
Sprache der Veröffentlichung:Englisch
Veröffentlichungsdatum (online):29.11.2012
Jahr der Veröffentlichung:2012
Veröffentlichende Institution:Technische Universität Kaiserslautern
Titel verleihende Institution:Technische Universität Kaiserslautern
Datum der Annahme der Abschlussarbeit:26.10.2012
Datum der Publikation (Server):30.11.2012
Fachbereiche / Organisatorische Einheiten:Fachbereich Mathematik
DDC-Sachgruppen:5 Naturwissenschaften und Mathematik / 510 Mathematik
MSC-Klassifikation (Mathematik):60-XX PROBABILITY THEORY AND STOCHASTIC PROCESSES (For additional applications, see 11Kxx, 62-XX, 90-XX, 91-XX, 92-XX, 93-XX, 94-XX) / 60Gxx Stochastic processes / 60G51 Processes with independent increments; Lévy processes
Lizenz (Deutsch):Standard gemäß KLUEDO-Leitlinien vom 10.09.2012