Supervised and Transductive Multi-Class Segmentation Using p-Laplacians and RKHS methods

  • This paper considers supervised multi-class image segmentation: from a labeled set of pixels in one image, we learn the segmentation and apply it to the rest of the image or to other similar images. We study approaches with p-Laplacians, (vector-valued) Reproducing Kernel Hilbert Spaces (RKHSs) and combinations of both. In all approaches we construct segment membership vectors. In the p-Laplacian model the segment membership vectors have to fulfill a certain probability simplex constraint. Interestingly, we could prove that this is not really a constraint in the case p=2 but is automatically fulfilled. While the 2-Laplacian model gives a good general segmentation, the case of the 1-Laplacian tends to neglect smaller segments. The RKHS approach has the benefit of fast computation. This direction is motivated by image colorization, where a given dab of color is extended to a nearby region of similar features or to another image. The connection between colorization and multi-class segmentation is explored in this paper with an application to medical image segmentation. We further consider an improvement using a combined method. Each model is carefully considered with numerical experiments for validation, followed by medical image segmentation at the end.

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Verfasserangaben:Sung Ha Kang, Behrang Shafei, Gabriele Steidl
URN (Permalink):urn:nbn:de:hbz:386-kluedo-31695
Sprache der Veröffentlichung:Englisch
Veröffentlichungsdatum (online):08.06.2012
Jahr der Veröffentlichung:2012
Veröffentlichende Institution:Technische Universität Kaiserslautern
Datum der Publikation (Server):08.06.2012
Fachbereiche / Organisatorische Einheiten:Fachbereich Mathematik
DDC-Sachgruppen:5 Naturwissenschaften und Mathematik / 510 Mathematik
Lizenz (Deutsch):Standard gemäß KLUEDO-Leitlinien vom 15.02.2012