A discrete mechanics approach to Cosserat rod theory – Part 1: static equilibria

  • A theory of discrete Cosserat rods is formulated in the language of discrete Lagrangian mechanics. By exploiting Kirchho's kinetic analogy, the potential energy density of a rod is a function on the tangent bundle of the conguration manifold and thus formally corresponds to the Lagrangian function of a dynamical system. The equilibrium equations are derived from a variational principle using a formulation that involves null{space matrices. In this formulation, no Lagrange multipliers are necessary to enforce orthonormality of the directors. Noether's theorem relates rst integrals of the equilibrium equations to Lie group actions on the conguration bundle, so{called symmetries. The symmetries relevant for rod mechanics are frame{indierence, isotropy and uniformity. We show that a completely analogous and self{contained theory of discrete rods can be formulated in which the arc{length is a discrete variable ab initio. In this formulation, the potential energy density is dened directly on pairs of points along the arc{length of the rod, in analogy to Veselov's discrete reformulation of Lagrangian mechanics. A discrete version of Noether's theorem then identies exact rst integrals of the discrete equilibrium equations. These exact conservation properties confer the discrete solutions accuracy and robustness, as demonstrated by selected examples of application. Copyright c 2010 John Wiley & Sons, Ltd.

Volltext Dateien herunterladen

Metadaten exportieren

  • Export nach Bibtex
  • Export nach RIS

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Verfasserangaben:P. Jung, S. Leyendecker, J. Linn, M. Ortiz
URN (Permalink):urn:nbn:de:hbz:386-kluedo-16485
Schriftenreihe (Bandnummer):Berichte des Fraunhofer-Instituts für Techno- und Wirtschaftsmathematik (ITWM Report) (183)
Sprache der Veröffentlichung:Englisch
Jahr der Fertigstellung:2010
Jahr der Veröffentlichung:2010
Veröffentlichende Institution:Fraunhofer-Institut für Techno- und Wirtschaftsmathematik
Datum der Publikation (Server):21.07.2010
Freies Schlagwort / Tag:Lagrangian mechanics ; Noether’s theorem ; Special Cosserat rods ; discrete mechanics ; frameindifference
Fachbereiche / Organisatorische Einheiten:Fraunhofer (ITWM)
DDC-Sachgruppen:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Lizenz (Deutsch):Standard gemäß KLUEDO-Leitlinien vor dem 27.05.2011

$Rev: 13581 $