The Binomial Approach to Option Valuation: Getting Binomial Trees into Shape

  • This thesis deals with the application of binomial option pricing in a single-asset Black-Scholes market and its extension to multi-dimensional situations. Although the binomial approach is, in principle, an efficient method for lower dimensional valuation problems, there are at least two main problems regarding its application: Firstly, traded options often exhibit discontinuities, so that the Berry- Esséen inequality is in general tight; i.e. conventional tree methods converge no faster than with order 1/sqrt(N). Furthermore, they suffer from an irregular convergence behaviour that impedes the possibility to achieve a higher order of convergence via extrapolation methods. Secondly, in multi-asset markets conventional tree construction methods cannot ensure well-defined transition probabilities for arbitrary correlation structures between the assets. As a major aim of this thesis, we present two approaches to get binomial trees into shape in order to overcome the main problems in applications; the optimal drift model for the valuation of single-asset options and the decoupling approach to multi-dimensional option pricing. The new valuation methods are embedded into a self-contained survey of binomial option pricing, which focuses on the convergence behaviour of binomial trees. The optimal drift model is a new one-dimensional binomial scheme that can lead to convergence of order o(1/N) by exploiting the specific structure of the valuation problem under consideration. As a consequence, it has the potential to outperform benchmark algorithms. The decoupling approach is presented as a universal construction method for multi-dimensional trees. The corresponding trees are well-defined for an arbitrary correlation structure of the underlying assets. In addition, they yield a more regular convergence behaviour. In fact, the sawtooth effect can even vanish completely, so that extrapolation can be applied.

Volltext Dateien herunterladen

Metadaten exportieren

  • Export nach Bibtex
  • Export nach RIS

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:Stefanie Müller
URN (Permalink):urn:nbn:de:hbz:386-kluedo-24627
Betreuer:Ralf Korn
Dokumentart:Dissertation
Sprache der Veröffentlichung:Englisch
Jahr der Fertigstellung:2009
Jahr der Veröffentlichung:2009
Veröffentlichende Institution:Technische Universität Kaiserslautern
Titel verleihende Institution:Technische Universität Kaiserslautern
Datum der Annahme der Abschlussarbeit:16.12.2009
Datum der Publikation (Server):07.01.2010
Freies Schlagwort / Tag:Extrapolation; Finanznumerik ; Konvergenzrate ; Konvergenzverhalten ; Multi-Asset Option ; Sägezahneffekt ; monotone Konvergenz
binomial tree ; computational finance ; convergence behaviour ; multi-asset option ; option valuation ; rate of convergence ; sawtooth effect
GND-Schlagwort:Approximationsalgorithmus; Bewertung ; Binomialbaum ; Derivat <Wertpapier> ; Finanzmathematik ; Option
Fachbereiche / Organisatorische Einheiten:Fachbereich Mathematik
DDC-Sachgruppen:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
MSC-Klassifikation (Mathematik):65-XX NUMERICAL ANALYSIS / 65Cxx Probabilistic methods, simulation and stochastic differential equations (For theoretical aspects, see 68U20 and 60H35) / 65C40 Computational Markov chains
91-XX GAME THEORY, ECONOMICS, SOCIAL AND BEHAVIORAL SCIENCES / 91Gxx Mathematical finance / 91G20 Derivative securities
91-XX GAME THEORY, ECONOMICS, SOCIAL AND BEHAVIORAL SCIENCES / 91Gxx Mathematical finance / 91G60 Numerical methods (including Monte Carlo methods)
Lizenz (Deutsch):Standard gemäß KLUEDO-Leitlinien vor dem 27.05.2011

$Rev: 13581 $