Homogenization in elasto-plasticity

  • The theory of the two-scale convergence was applied to homogenization of elasto-plastic composites with a periodic structure and exponential hardening law. The theory is based on the fact that the elastic as well as the plastic part of the stress field two-scale converges to a limit, which is factorized by parts, depending only on macroscopic characteristics, represented in terms of corresponding part of the homogenised stress tensor and only on stress concentration tensor, related to the micro-geometry and elastic or plastic micro-properties of composite components. The theory was applied to metallic matrix material with Ludwik and Hocket-Sherby hardening law and pure elastic inclusions in two numerical examples. Results were compared with results of mechanical averaging based on the self-consistent methods.

Volltext Dateien herunterladen

Metadaten exportieren

  • Export nach Bibtex
  • Export nach RIS

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:J. Orlik
URN (Permalink):urn:nbn:de:hbz:386-kluedo-15573
Schriftenreihe (Bandnummer):Berichte des Fraunhofer-Instituts für Techno- und Wirtschaftsmathematik (ITWM Report) (135)
Dokumentart:Bericht
Sprache der Veröffentlichung:Englisch
Jahr der Fertigstellung:2008
Jahr der Veröffentlichung:2008
Veröffentlichende Institution:Fraunhofer-Institut für Techno- und Wirtschaftsmathematik
Datum der Publikation (Server):18.06.2008
Freies Schlagwort / Tag:Asymptotic homogenization ; Multiscale structures ; Nonlinear energy
Fachbereiche / Organisatorische Einheiten:Fraunhofer (ITWM)
DDC-Sachgruppen:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
Lizenz (Deutsch):Standard gemäß KLUEDO-Leitlinien vor dem 27.05.2011

$Rev: 13581 $