Quasiregular Projective Panes of Order 16 -- A Computational Approach

Quasireguläre projektive Ebenen der Ordnung 16

  • This thesis discusses methods for the classification of finite projective planes via exhaustive search. In the main part the author classifies all projective planes of order 16 admitting a large quasiregular group of collineations. This is done by a complete search using the computer algebra system GAP. Computational methods for the construction of relative difference sets are discussed. These methods are implemented in a GAP-package, which is available separately. As another result --found in cooperation with U. Dempwolff-- the projective planes defined by planar monomials are classified. Furthermore the full automorphism group of the non-translation planes defined by planar monomials are classified.
  • Die Arbeit befasst sich mit Methoden zur Klassifikation endlicher projektiver Ebenen mittels vollständiger Suche. Im Hauptteil werden die projektiven Ebenen der Ordnung 16 klassifiziert, die eine große quasireguläre Kollineationsgruppe besitzen. Dies geschieht durch eine vollständige Suche mit Hilfe des Computeralgebra Systems GAP. Dafür werden Methoden zur Konstruktion relativer Differenzmengen erörtert. Diese Methoden wurden vom Verfasser in einem GAP-Paket implementiert und sind separat erhältlich. Ein weiteres Resultat (in Zusammenarbeit mit U. Dempwolff) ist die Klassifikation der projektiven Ebenen, die durch planare Monome definiert sind. Für Ebenen, die durch Monome definiert und keine Translationsebenen sind, wird die volle Automorphismengruppe berechnet. Damit sind für alle planare Monome die Automoprhismengruppen der zugehörigen Ebenen bekannt.

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Marc Röder
URN (permanent link):urn:nbn:de:hbz:386-kluedo-20369
Advisor:Ulrich Dempwolff
Document Type:Doctoral Thesis
Language of publication:English
Year of Completion:2006
Year of Publication:2006
Publishing Institute:Technische Universität Kaiserslautern
Granting Institute:Technische Universität Kaiserslautern
Acceptance Date of the Thesis:2006/11/21
Tag:Nicht-Desarguessche Ebene ; Planares Polynom ; quasireguläre Gruppe
non-desarguesian plane ; planar polynomial ; quasiregular group
GND-Keyword:Differenzmenge; Endliche Geometrie
Faculties / Organisational entities:Fachbereich Mathematik
DDC-Cassification:510 Mathematik
MSC-Classification (mathematics):05B10 Difference sets (number-theoretic, group-theoretic, etc.) [See also 11B13]
05B25 Finite geometries [See also 51D20, 51Exx]
12E10 Special polynomials
51A35 Non-Desarguesian affine and projective planes
51E15 Affine and projective planes

$Rev: 12793 $