Comparison of the solutions of the elastic and elastoplastic boundary value problems

  • In this article, we consider the quasistatic boundary value problems of linear elasticity and nonlinear elastoplasticity, with linear Hooke’s law in the elastic regime for both problems and with the linear kinematic hardening law for the plastic regime in the latter problem. We derive expressions and estimates for the difference of the solutions of both models, i.e. for the stresses, the strains and the displacements. To this end, we use the stop and play operators of nonlinear functional analysis. Further, we give an explicit example of a homotopy between the solutions of both problems.

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:H. Lang, G. Bitsch, K. Dreßler, M. Speckert
URN (permanent link):urn:nbn:de:hbz:386-kluedo-14620
Serie (Series number):Berichte des Fraunhofer-Instituts für Techno- und Wirtschaftsmathematik (ITWM Report) (99)
Document Type:Report
Language of publication:English
Year of Completion:2006
Year of Publication:2006
Publishing Institute:Fraunhofer-Institut für Techno- und Wirtschaftsmathematik
Creating Corporation:Fraunhofer ITWM
Tag:Elastic BVP ; elastoplastic BVP ; linear kinematic hardening ; rate-indepenhysteresis ; stop- and play-operator; variational inequalities
Elastic BVP; elastoplastic BVP ; linear kinematic hardening ; rate-indepenhysteresis ; stop- and play-operator; variational inequalities
Faculties / Organisational entities:Fraunhofer (ITWM)
DDC-Cassification:510 Mathematik

$Rev: 12793 $