Remote sensing the distribution and spatiotemporal changes of major lichen communities in the Central Namib Desert

  • Biological Soil Crusts (BSCs), composed of lichens, mosses, green algae, microfungi and cyanobacteria are an ecological important part of the perennial landcover of many arid and semiarid regions (Belnap et al. 2001a), (Büdel 2002). In many arid and hyperarid areas BSCs form the only perennial "vegetation cover" largely due to their extensive resistance to drought (Lange et al. 1975). For the Central Namib Desert (Namibia), BSCs consisting of extraordinary vast lichen communities were recently mapped and classified into six morphological classes for a coastal area of 350 km x 60 km. Embedded into the project "BIOTA" (www.biota-africa.org) financed by the German Federal Ministry of Education and Research the study was undertaken in the framework of the PhD thesis by Christoph Schultz. Some of these lichen communities grouped together in so called "lichen fields" have already been studied concerning their ecology and diversity in the past (Lange et al. 1994), (Loris & Schieferstein 1992), (Loris et al. 2004), (Ullmann & Büdel 2001a), (Wessels 1989). Multispectral LANDSAT 7 ETM+ and LANDSAT 5 TM satellite imagery was utilized for an unitemporal supervised classification as well as for the establishment of a monitoring based on a combined retrospective supervised classification and change detection approach (Bock 2003), (Weiers et al. 2003). Results comprise the analysis of the mapped distribution of lichen communities for the Central Namib Desert as of 2003 as well as reconstructed distributions for the years 2000, 1999, 1992 and 1991 derived from retrospective supervised classification. This allows a first monitoring of the disturbance, destruction and recovery of the lichen communities in these arid environments including the analysis of the major abiotic processes involved. Further analysis of these abiotic processes is key for understanding the influence of Namib lichen communities on overall aeolian and water induced erosion rates, nutrient cycles, water balance and pedogenic processes (Belnap & Gillette 1998), (Belnap et al. 2001b), (Belnap 2001c), (Evans & Lange 2001), (McKenna Neumann & Maxwell 1999). In order to aid the understanding of these processes SRTM digital elevation model data as well as climate data sets were used as reference. Good correlation between geomorphological form elements as well as hydrological drainage system and the disturbance patterns derived from individual post classification change comparisons between the timeframes could be observed. Conjoined with the climate data sets sporadic foehn-like windstorms as well as extraordinary precipitation events were identified to largely affect the distribution patterns of lichen communities. Therefore the analysis and monitoring of the diversity, distribution and spatiotemporal change of Central Namib BSCs with the means of Remote Sensing and GIS applications proof to be important tools to create further understanding of desertification and degradation processes in these arid regions.
  • Fernerkundliche Erfassung der Verbreitung und spatiotemporalen Veränderungen von Flechtengesellschaften in der Zentralen Namib Wüste, Namibia

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Christoph Schultz
URN (permanent link):urn:nbn:de:hbz:386-kluedo-19299
Advisor:Burkhard Büdel
Document Type:Doctoral Thesis
Language of publication:English
Year of Completion:2006
Year of Publication:2006
Publishing Institute:Technische Universität Kaiserslautern
Granting Institute:Technische Universität Kaiserslautern
Acceptance Date of the Thesis:2006/02/08
Tag:change detection ; landsat ; lichen; multitemporal ; remote sensing ; srtm
GND-Keyword:Fernerkundung ; Flechten ; Namibia ; Optische Fernerkundung ; Satellitenfernerkundung ; Swakopmund
Faculties / Organisational entities:Fachbereich Biologie
DDC-Cassification:570 Biowissenschaften; Biologie

$Rev: 12793 $