Contributions of the Geomathematics Group to the GAMM 76th Annual Meeting

  • The following three papers present recent developments in nonlinear Galerkin schemes for solving the spherical Navier-Stokes equation, in wavelet theory based on the 3-dimensional ball, and in multiscale solutions of the Poisson equation inside the ball, that have been presented at the 76th GAMM Annual Meeting in Luxemburg. Part A: A Nonlinear Galerkin Scheme Involving Vectorial and Tensorial Spherical Wavelets for Solving the Incompressible Navier-Stokes Equation on the Sphere The spherical Navier-Stokes equation plays a fundamental role in meteorology by modelling meso-scale (stratified) atmospherical flows. This article introduces a wavelet based nonlinear Galerkin method applied to the Navier-Stokes equation on the rotating sphere. In detail, this scheme is implemented by using divergence free vectorial spherical wavelets, and its convergence is proven. To improve numerical efficiency an extension of the spherical panel clustering algorithm to vectorial and tensorial kernels is constructed. This method enables the rapid computation of the wavelet coefficients of the nonlinear advection term. Thereby, we also indicate error estimates. Finally, extensive numerical simulations for the nonlinear interaction of three vortices are presented. Part B: Methods of Resolution for the Poisson Equation on the 3D Ball Within the article at hand, we investigate the Poisson equation solved by an integral operator, originating from an ansatz by Greens functions. This connection between mass distributions and the gravitational force is essential to investigate, especially inside the Earth, where structures and phenomena are not sufficiently known and plumbable. Since the operator stated above does not solve the equation for all square-integrable functions, the solution space will be decomposed by a multiscale analysis in terms of scaling functions. Classical Euclidean wavelet theory appears not to be the appropriate choice. Ansatz functions are chosen to be reflecting the rotational invariance of the ball. In these terms, the operator itself is finally decomposed and replaced by versions more manageable, revealing structural information about itself. Part C: Wavelets on the 3–dimensional Ball In this article wavelets on a ball in R^3 are introduced. Corresponding properties like an approximate identity and decomposition/reconstruction (scale step property) are proved. The advantage of this approach compared to a classical Fourier analysis in orthogonal polynomials is a better localization of the used ansatz functions.

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Verfasserangaben:M.J. Fengler, D. Michel, V. Michel
URN (Permalink):urn:nbn:de:hbz:386-kluedo-14096
Schriftenreihe (Bandnummer):Schriften zur Funktionalanalysis und Geomathematik (23)
Sprache der Veröffentlichung:Englisch
Jahr der Fertigstellung:2005
Jahr der Veröffentlichung:2005
Veröffentlichende Institution:Technische Universität Kaiserslautern
Datum der Publikation (Server):20.01.2006
Freies Schlagwort / Tag:Wavelets auf der Kugel und der Sphäre; lokalisierende Kerne
GND-Schlagwort:Approximation; Galerkin-Methode; Mehrskalenanalyse; Modellierung; Navier-Stokes-Gleichung; Poisson-Gleichung; Wavelet
Fachbereiche / Organisatorische Einheiten:Fachbereich Mathematik
DDC-Sachgruppen:5 Naturwissenschaften und Mathematik / 510 Mathematik
MSC-Klassifikation (Mathematik):31-XX POTENTIAL THEORY (For probabilistic potential theory, see 60J45) / 31Bxx Higher-dimensional theory / 31B05 Harmonic, subharmonic, superharmonic functions
42-XX FOURIER ANALYSIS / 42Cxx Nontrigonometric harmonic analysis / 42C40 Wavelets and other special systems
65-XX NUMERICAL ANALYSIS / 65Txx Numerical methods in Fourier analysis / 65T60 Wavelets
76-XX FLUID MECHANICS (For general continuum mechanics, see 74Axx, or other parts of 74-XX) / 76Dxx Incompressible viscous fluids / 76D05 Navier-Stokes equations [See also 35Q30]
86-XX GEOPHYSICS [See also 76U05, 76V05] / 86Axx Geophysics [See also 76U05, 76V05] / 86A10 Meteorology and atmospheric physics [See also 76Bxx, 76E20, 76N15, 76Q05, 76Rxx, 76U05]
Lizenz (Deutsch):Standard gemäß KLUEDO-Leitlinien vor dem 27.05.2011