Crash Hedging Strategies and Optimal Portfolios

  • In traditional portfolio optimization under the threat of a crash the investment horizon or time to maturity is neglected. Developing the so-called crash hedging strategies (which are portfolio strategies which make an investor indifferent to the occurrence of an uncertain (down) jumps of the price of the risky asset) the time to maturity turns out to be essential. The crash hedging strategies are derived as solutions of non-linear differential equations which itself are consequences of an equilibrium strategy. Hereby the situation of changing market coefficients after a possible crash is considered for the case of logarithmic utility as well as for the case of general utility functions. A benefit-cost analysis of the crash hedging strategy is done as well as a comparison of the crash hedging strategy with the optimal portfolio strategies given in traditional crash models. Moreover, it will be shown that the crash hedging strategies optimize the worst-case bound for the expected utility from final wealth subject to some restrictions. Another application is to model crash hedging strategies in situations where both the number and the height of the crash are uncertain but bounded. Taking the additional information of the probability of a possible crash happening into account leads to the development of the q-quantile crash hedging strategy.
  • Crash Hedging Strategien und Optimale Portfolios

Volltext Dateien herunterladen

Metadaten exportieren

  • Export nach Bibtex
  • Export nach RIS

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:Olaf Arnd Menkens
URN (Permalink):urn:nbn:de:hbz:386-kluedo-18010
Betreuer:Ralf Korn
Dokumentart:Dissertation
Sprache der Veröffentlichung:Englisch
Jahr der Fertigstellung:2004
Jahr der Veröffentlichung:2004
Veröffentlichende Institution:Technische Universität Kaiserslautern
Titel verleihende Institution:Technische Universität Kaiserslautern
Datum der Annahme der Abschlussarbeit:30.11.2004
Datum der Publikation (Server):21.01.2005
Freies Schlagwort / Tag:Betrachtung des Schlimmstmöglichen Falles; Crash Hedging; Gleichgewichtsstrategien; Portfolio Optimierung
changing market coefficients; crash hedging; equilibrium strategies; portfolio optimization; worst-case scenario
GND-Schlagwort:Hamilton-Jacobi-Differentialgleichung ; Portfolio Selection; Stochastische dynamische Optimierung
Fachbereiche / Organisatorische Einheiten:Fachbereich Mathematik
DDC-Sachgruppen:5 Naturwissenschaften und Mathematik / 51 Mathematik / 510 Mathematik
MSC-Klassifikation (Mathematik):49-XX CALCULUS OF VARIATIONS AND OPTIMAL CONTROL; OPTIMIZATION [See also 34H05, 34K35, 65Kxx, 90Cxx, 93-XX] / 49Jxx Existence theories / 49J15 Optimal control problems involving ordinary differential equations
49-XX CALCULUS OF VARIATIONS AND OPTIMAL CONTROL; OPTIMIZATION [See also 34H05, 34K35, 65Kxx, 90Cxx, 93-XX] / 49Jxx Existence theories / 49J20 Optimal control problems involving partial differential equations
60-XX PROBABILITY THEORY AND STOCHASTIC PROCESSES (For additional applications, see 11Kxx, 62-XX, 90-XX, 91-XX, 92-XX, 93-XX, 94-XX) / 60Hxx Stochastic analysis [See also 58J65] / 60H15 Stochastic partial differential equations [See also 35R60]
91-XX GAME THEORY, ECONOMICS, SOCIAL AND BEHAVIORAL SCIENCES / 91Bxx Mathematical economics (For econometrics, see 62P20) / 91B70 Stochastic models
Lizenz (Deutsch):Standard gemäß KLUEDO-Leitlinien vor dem 27.05.2011

$Rev: 13581 $