Algebraic Systems Theory

  • Control systems are usually described by differential equations, but their properties of interest are most naturally expressed in terms of the system trajectories, i.e., the set of all solutions to the equations. This is the central idea behind the so-called "behavioral approach" to systems and control theory. On the other hand, the manipulation of linear systems of differential equations can be formalized using algebra, more precisely, module theory and homological methods ("algebraic analysis"). The relationship between modules and systems is very rich, in fact, it is a categorical duality in many cases of practical interest. This leads to algebraic characterizations of structural systems properties such as autonomy, controllability, and observability. The aim of these lecture notes is to investigate this module-system correspondence. Particular emphasis is put on the application areas of one-dimensional rational systems (linear ODE with rational coefficients), and multi-dimensional constant systems (linear PDE with constant coefficients).

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Verfasserangaben:Eva Zerz
URN (Permalink):urn:nbn:de:hbz:386-kluedo-15679
Schriftenreihe (Bandnummer):Berichte der Arbeitsgruppe Technomathematik (AGTM Report) (259)
Sprache der Veröffentlichung:Englisch
Jahr der Fertigstellung:2004
Jahr der Veröffentlichung:2004
Veröffentlichende Institution:Technische Universität Kaiserslautern
Datum der Publikation (Server):25.08.2004
Freies Schlagwort / Tag:Abstract linear systems theory; Multi-dimensional systems; One-dimensional systems; basic systems theoretic properties
Altdaten, kein Volltext verfügbar ; Printversion in Bereichsbibliothek Mathematik vorhanden: MAT 144/620-259
Fachbereiche / Organisatorische Einheiten:Fachbereich Mathematik
DDC-Sachgruppen:5 Naturwissenschaften und Mathematik / 510 Mathematik
Lizenz (Deutsch):Standard gemäß KLUEDO-Leitlinien vor dem 27.05.2011