Multiresolution Data Analysis - Numerical Realization by use of Domain Decomposition Methods and Fast Multipole Techniques / Multiscale Solutions of Oblique Boundary-Value Problems by Layer Potentials

  • This survey paper deals with multiresolution analysis from geodetically relevant data and its numerical realization for functions harmonic outside a (Bjerhammar) sphere inside the Earth. Harmonic wavelets are introduced within a suit- able framework of a Sobolev-like Hilbert space. Scaling functions and wavelets are defined by means of convolutions. A pyramid scheme provides efficient implementation und economical computation. Essential tools are the multiplicative Schwarz alternating algorithm (providing domain decomposition procedures) and fast multipole techniques (accelerating iterative solvers of linear systems).

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:W. Freeden, C. Mayer
URN (permanent link):urn:nbn:de:hbz:386-kluedo-12353
Serie (Series number):Berichte der Arbeitsgruppe Technomathematik (AGTM Report) (251)
Document Type:Preprint
Language of publication:English
Year of Completion:2002
Year of Publication:2002
Publishing Institute:Technische Universität Kaiserslautern
Tag:Multiresolution analysis ; domain decomposition methods; harmonic wavelets ; pyramid schemes ; reconstruction formula
Faculties / Organisational entities:Fachbereich Mathematik
DDC-Cassification:510 Mathematik

$Rev: 12793 $