Financial Risk Management and Portfolio Optimization Using Artificial Neural Networks and Extreme Value Theory

  • In the present work, we investigated how to correct the questionable normality, linear and quadratic assumptions underlying existing Value-at-Risk methodologies. In order to take also into account the skewness, the heavy tailedness and the stochastic feature of the volatility of the market values of financial instruments, the constant volatility hypothesis widely used by existing Value-at-Risk appproches has also been investigated and corrected and the tails of the financial returns distributions have been handled via Generalized Pareto or Extreme Value Distributions. Artificial Neural Networks have been combined by Extreme Value Theory in order to build consistent and nonparametric Value-at-Risk measures without the need to make any of the questionable assumption specified above. For that, either autoregressive models (AR-GARCH) have been used or the direct characterization of conditional quantiles due to Bassett, Koenker [1978] and Smith [1987]. In order to build consistent and nonparametric Value-at-Risk estimates, we have proved some new results extending White Artificial Neural Network denseness results to unbounded random variables and provide a generalisation of the Bernstein inequality, which is needed to establish the consistency of our new Value-at-Risk estimates. For an accurate estimation of the quantile of the unexpected returns, Generalized Pareto and Extreme Value Distributions have been used. The new Artificial Neural Networks denseness results enable to build consistent, asymptotically normal and nonparametric estimates of conditional means and stochastic volatilities. The denseness results uses the Sobolev metric space L^m (my) for some m >= 1 and some probability measure my and which holds for a certain subclass of square integrable functions. The Fourier transform, the new extension of the Bernstein inequality for unbounded random variables from stationary alpha-mixing processes combined with the new generalization of a result of White and Wooldrige [1990] have been the main tool to establich the extension of White's neural network denseness results. To illustrate the goodness and level of accuracy of the new denseness results, we were able to demonstrate the applicability of the new Value-at-Risk approaches by means of three examples with real financial data mainly from the banking sector traded on the Frankfort Stock Exchange.
  • Financial Risk Management and Portfolio Optimization Using Artificial Neural Networks and Extreme Value Theory

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Mabouba Diagne
URN (permanent link):urn:nbn:de:bsz:386-kluedo-13951
Advisor:Jürgen Franke
Document Type:Doctoral Thesis
Language of publication:English
Year of Completion:2002
Year of Publication:2002
Publishing Institute:Technische Universität Kaiserslautern
Granting Institute:Technische Universität Kaiserslautern
Acceptance Date of the Thesis:2002/07/18
Faculties / Organisational entities:Fachbereich Mathematik
DDC-Cassification:510 Mathematik

$Rev: 12793 $