Gradiometry - an Inverse Problem in Modern Satellite Geodesy

  • Satellite gradiometry and its instrumentation is an ultra-sensitive detection technique of the space gravitational gradient (i.e. the Hesse tensor of the gravitational potential). Gradeometry will be of great significance in inertial navigation, gravity survey, geodynamics and earthquake prediction research. In this paper, satellite gradiometry formulated as an inverse problem of satellite geodesy is discussed from two mathematical aspects: Firstly, satellite gradiometry is considered as a continuous problem of harmonic downward continuation. The space-borne gravity gradients are assumed to be known continuously over the satellite (orbit) surface. Our purpose is to specify sufficient conditions under which uniqueness and existence can be guaranteed. It is shown that, in a spherical context, uniqueness results are obtainable by decomposition of the Hesse matrix in terms of tensor spherical harmonics. In particular, the gravitational potential is proved to be uniquely determined if second order radial derivatives are prescribed at satellite height. This information leads us to a reformulation of satellite gradiometry as a (Fredholm) pseudodifferential equation of first kind. Secondly, for a numerical realization, we assume the gravitational gradients to be known for a finite number of discrete points. The discrete problem is dealt with classical regularization methods, based on filtering techniques by means of spherical wavelets. A spherical singular integral-like approach to regularization methods is established, regularization wavelets are developed which allow the regularization in form of a multiresolution analysis. Moreover, a combined spherical harmonic and spherical regularization wavelet solution is derived as an appropriate tool in future (global and local) high-presision resolution of the earth" s gravitational potential.

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Verfasserangaben:Willi Freeden, F. Schneider, Michael Schreiner
URN (Permalink):urn:nbn:de:hbz:386-kluedo-5640
Schriftenreihe (Bandnummer):Berichte der Arbeitsgruppe Technomathematik (AGTM Report) (161)
Sprache der Veröffentlichung:Englisch
Jahr der Fertigstellung:1996
Jahr der Veröffentlichung:1996
Veröffentlichende Institution:Technische Universität Kaiserslautern
Datum der Publikation (Server):03.04.2000
Altdaten, kein Volltext verfügbar ; Printversion in Bereichsbibliothek Mathematik vorhanden: MAT 144/620-161
Quelle:GAMM-SIAM Symposium on Inverse Problems in Geophysical Applications 179-239 (1997)
Fachbereiche / Organisatorische Einheiten:Fachbereich Mathematik
DDC-Sachgruppen:5 Naturwissenschaften und Mathematik / 510 Mathematik
Lizenz (Deutsch):Standard gemäß KLUEDO-Leitlinien vor dem 27.05.2011