UNIVERSITÄTSBIBLIOTHEK

Repräsentation technologischer Wissensbasen für die Wissensakquisition durch Maschinelles Lernen in der generierenden Arbeitsplanerstellung

  • Der Wissenserwerb erschwert bisher häufig den Einsatz wissensbasierter Systeme der Arbeitsplanerstellung in der industriellen Praxis. Die meisten Anwendungen gestatten nur das Erfassen und Editieren des durch aufwendige Erhebung, Systematisierung und Formulierung gewonnenen fachspezifischen Planungswissens. Im Rahmen eines DFG-Projektes soll die Anwendbarkeit bekannter maschineller Lernverfahren auf technologische Reihenfolge- und Zuordnungsprobleme im Rahmen der generierenden Arbeitsplanerstellung von Teilefertigungsprozessen im Maschinenbau nachgewiesen werden. Dazu wird ein Prototyp mit Hilfe eines verfügbaren Softwarewerkzeuges entwickelt, der das maschinelle Lernen aus vorgegebenen Beispielen ermöglichen und mit einem existierenden Prototypen der wissensbasierten Arbeistplanung kommunizieren soll. Der folgende Beitrag gibt einen Überblick über das mit Lernverfahren zu behandelnde Planungswissen und stellt mögliche Repräsentationsmöglichkeiten des Wissens zur Diskussion.

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:Wolfgang Ewert, Frank Leidholdt, Holger Dürr
URN (Permalink):urn:nbn:de:hbz:386-kluedo-1460
Dokumentart:Preprint
Sprache der Veröffentlichung:Deutsch
Jahr der Fertigstellung:1999
Jahr der Veröffentlichung:1999
Veröffentlichende Institution:Technische Universität Kaiserslautern
Datum der Publikation (Server):03.04.2000
Freies Schlagwort / Tag:knowledge-based planning; wissensbasierter Systeme der Arbeitsplanerstellung
Fachbereiche / Organisatorische Einheiten:Fachbereich Informatik
DDC-Sachgruppen:0 Allgemeines, Informatik, Informationswissenschaft / 004 Informatik
Lizenz (Deutsch):Standard gemäß KLUEDO-Leitlinien vor dem 27.05.2011