• search hit 7 of 7
Back to Result List

Optimal portfolios with bounded Capital-at-Risk

  • We consider some continuous-time Markowitz type portfolio problems that consist of maximizing expected terminal wealth under the constraint of an upper bound for the Capital-at-Risk. In a Black-Scholes setting we obtain closed form explicit solutions and compare their form and implications to those of the classical continuous-time mean-variance problem. We also consider more general price processes which allow for larger uctuations in the returns.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Author:Susanne Emmer, Claudia Klüppelberg, Ralf Korn
URN (permanent link):urn:nbn:de:hbz:386-kluedo-10622
Serie (Series number):Report in Wirtschaftsmathematik (WIMA Report) (66)
Document Type:Preprint
Language of publication:English
Year of Completion:2000
Year of Publication:2000
Publishing Institute:Technische Universität Kaiserslautern
Date of the Publication (Server):2000/08/28
Tag:Black-Scholes model; Capital-at-Risk; Value-at-Risk; generalized inverse Gaussian diffusion; jump diffusion; portfolio optimization
Faculties / Organisational entities:Fachbereich Mathematik
DDC-Cassification:5 Naturwissenschaften und Mathematik / 510 Mathematik
Licence (German):Standard gemäß KLUEDO-Leitlinien vor dem 27.05.2011