UNIVERSITÄTSBIBLIOTHEK
  • search hit 18 of 1340
Back to Result List

Assessment, Semantification and Applications of Sensor Data

  • The usage of sensors in modern technical systems and consumer products is in a rapid increase. This advancement can be characterized by two major factors, namely, the mass introduction of consumer oriented sensing devices to the market and the sheer amount of sensor data being generated. These characteristics raise subsequent challenges regarding both the consumer sensing devices' reliability and the management and utilization of the generated sensor data. This thesis addresses these challenges through two main contributions. It presents a novel framework that leverages sentiment analysis techniques in order to assess the quality of consumer sensing devices. It also couples semantic technologies with big data technologies to present a new optimized approach for realization and management of semantic sensor data, hence providing a robust means of integration, analysis, and reuse of the generated data. The thesis also presents several applications that show the potential of the contributions in real-life scenarios. Due to the broad range, growing feature set and fast release pace of new sensor-based products, evaluating these products is very challenging as standard product testing is not practical. As an alternative, an end-to-end aspect-based sentiment summarizer pipeline for evaluation of consumer sensing devices is presented. The pipeline uses product reviews to extract the sentiment at the aspect level and includes several components namely, product name extractor, aspects extractor and a lexicon-based sentiment extractor which handles multiple sentiment analysis challenges such as sentiment shifters, negations, and comparative sentences among others. The proposed summarizer's components generally outperform the state-of-the-art approaches. As a use case, features of the market leading fitness trackers are evaluated and a dynamic visual summarizer is presented to display the evaluation results and to provide personalized product recommendations for potential customers. The increased usage of sensing devices in the consumer market is accompanied with increased deployment of sensors in various other fields such as industry, agriculture, and energy production systems. This necessitates using efficient and scalable methods for storing and processing of sensor data. Coupling big data technologies with semantic techniques not only helps to achieve the desired storage and processing goals, but also facilitates data integration, data analysis, and the utilization of data in unforeseen future applications through preserving the data generation context. This thesis proposes an efficient and scalable solution for semantification, storage and processing of raw sensor data through ontological modelling of sensor data and a novel encoding scheme that harnesses the split between the statements of the conceptual model of an ontology (TBox) and the individual facts (ABox) along with in-memory processing capabilities of modern big data systems. A sample use case is further introduced where a smartphone is deployed in a transportation bus to collect various sensor data which is then utilized in detecting street anomalies. In addition to the aforementioned contributions, and to highlight the potential use cases of sensor data publicly available, a recommender system is developed using running route data, used for proximity-based retrieval, to provide personalized suggestions for new routes considering the runner's performance, visual and nature of route preferences. This thesis aims at enhancing the integration of sensing devices in daily life applications through facilitating the public acquisition of consumer sensing devices. It also aims at achieving better integration and processing of sensor data in order to enable new potential usage scenarios of the raw generated data.
Metadaten
Author:Hassan Issa
URN (permanent link):urn:nbn:de:hbz:386-kluedo-56784
Advisor:Andreas Dengel
Document Type:Doctoral Thesis
Language of publication:English
Publication Date:2019/07/17
Date of first Publication:2019/07/17
Publishing Institute:Technische Universität Kaiserslautern
Granting Institute:Technische Universität Kaiserslautern
Acceptance Date of the Thesis:2018/11/30
Date of the Publication (Server):2019/07/17
Number of page:XIII, 133
Faculties / Organisational entities:Fachbereich Informatik
CCS-Classification (computer science):I. Computing Methodologies / I.2 ARTIFICIAL INTELLIGENCE / I.2.4 Knowledge Representation Formalisms and Methods (F.4.1)
DDC-Cassification:0 Allgemeines, Informatik, Informationswissenschaft / 004 Informatik
Licence (German):Creative Commons 4.0 - Namensnennung, nicht kommerziell, keine Bearbeitung (CC BY-NC-ND 4.0)