On the expected number of shadow vertices of the convex hull of random points
- Let \(a_1,\dots,a_m\) be independent random points in \(\mathbb{R}^n\) that are independent and identically distributed spherically symmetrical in \(\mathbb{R}^n\). Moreover, let \(X\) be the random polytope generated as the convex hull of \(a_1,\dots,a_m\) and let \(L_k\) be an arbitrary \(k\)-dimensional subspace of \(\mathbb{R}^n\) with \(2\le k\le n-1\). Let \(X_k\) be the orthogonal projection image of \(X\) in \(L_k\). We call those vertices of \(X\), whose projection images in \(L_k\) are vertices of \(X_k\)as well shadow vertices of \(X\) with respect to the subspace \(L_k\) . We derive a distribution independent sharp upper bound for the expected number of shadow vertices of \(X\) in \(L_k\).
Author: | Karl-Heinz Küfer |
---|---|
URN (permanent link): | urn:nbn:de:hbz:386-kluedo-50516 |
Serie (Series number): | Preprints (rote Reihe) des Fachbereich Mathematik (282) |
Document Type: | Report |
Language of publication: | English |
Publication Date: | 2017/11/09 |
Year of Publication: | 1996 |
Publishing Institute: | Technische Universität Kaiserslautern |
Date of the Publication (Server): | 2017/11/09 |
Number of page: | 15 |
Faculties / Organisational entities: | Fachbereich Mathematik |
DDC-Cassification: | 5 Naturwissenschaften und Mathematik / 510 Mathematik |
Licence (German): |