• search hit 51 of 141
Back to Result List

Tangent measure distributions of fractal measures

  • Tangent measure distributions are a natural tool to describe the local geometry of arbitrary measures of any dimension. We show that for every measure on a Euclidean space and every s, at almost every point, all s-dimensional tangent measure distributions define statistically self-similar random measures. Consequently, the local geometry of general measures is not different from the local geometry of self-similar sets. We illustrate the strength of this result by showing how it can be used to improve recently proved relations between ordinary and average densities.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Author:Peter Mörters, David Preiss
URN (permanent link):urn:nbn:de:hbz:386-kluedo-7902
Serie (Series number):Preprints (rote Reihe) des Fachbereich Mathematik (295)
Document Type:Preprint
Language of publication:English
Year of Completion:1999
Year of Publication:1999
Publishing Institute:Technische Universität Kaiserslautern
Date of the Publication (Server):2000/04/03
Tag:Palm distributions; average densities; geometric measure theory; order-two densities; tangent measure distributions
Faculties / Organisational entities:Fachbereich Mathematik
DDC-Cassification:5 Naturwissenschaften und Mathematik / 510 Mathematik
MSC-Classification (mathematics):28-XX MEASURE AND INTEGRATION (For analysis on manifolds, see 58-XX) / 28Axx Classical measure theory / 28A75 Length, area, volume, other geometric measure theory [See also 26B15, 49Q15]
28-XX MEASURE AND INTEGRATION (For analysis on manifolds, see 58-XX) / 28Axx Classical measure theory / 28A80 Fractals [See also 37Fxx]
60-XX PROBABILITY THEORY AND STOCHASTIC PROCESSES (For additional applications, see 11Kxx, 62-XX, 90-XX, 91-XX, 92-XX, 93-XX, 94-XX) / 60Gxx Stochastic processes / 60G57 Random measures
Licence (German):Standard gemäß KLUEDO-Leitlinien vor dem 27.05.2011