• search hit 5 of 11
Back to Result List

On the Approximation of a Ball by Random Polytopes

  • Let (\(a_i)_{i\in \bf{N}}\) be a sequence of identically and independently distributed random vectors drawn from the \(d\)-dimensional unit ball \(B^d\)and let \(X_n\):= convhull \((a_1,\dots,a_n\)) be the random polytope generated by \((a_1,\dots\,a_n)\). Furthermore, let \(\Delta (X_n)\) : = (Vol \(B^d\) \ \(X_n\)) be the deviation of the polytope's volume from the volume of the ball. For uniformly distributed \(a_i\) and \(d\ge2\), we prove that tbe limiting distribution of \(\frac{\Delta (X_n)} {E(\Delta (X_n))}\) for \(n\to\infty\) satisfies a 0-1-law. Especially, we provide precise information about the asymptotic behaviour of the variance of \(\Delta (X_n\)). We deliver analogous results for spherically symmetric distributions in \(B^d\) with regularly varying tail.

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Author:Karl-Heinz Küfer
URN (permanent link):urn:nbn:de:hbz:386-kluedo-50509
Serie (Series number):Preprints (rote Reihe) des Fachbereich Mathematik (250)
Document Type:Report
Language of publication:English
Publication Date:2017/11/09
Year of Publication:1994
Publishing Institute:Technische Universität Kaiserslautern
Date of the Publication (Server):2017/11/09
Number of page:17
Faculties / Organisational entities:Fachbereich Mathematik
DDC-Cassification:5 Naturwissenschaften und Mathematik / 510 Mathematik
Licence (German):Creative Commons 4.0 - Namensnennung, nicht kommerziell, keine Bearbeitung (CC BY-NC-ND 4.0)