Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 38 von 100
Zurück zur Trefferliste

SDE-driven modeling of phenotypically heterogeneous tumors: The influence of cancer cell stemness

  • We deduce cell population models describing the evolution of a tumor (possibly interacting with its environment of healthy cells) with the aid of differential equations. Thereby, different subpopulations of cancer cells allow accounting for the tumor heterogeneity. In our settings these include cancer stem cells known to be less sensitive to treatment and differentiated cancer cells having a higher sensitivity towards chemo- and radiotherapy. Our approach relies on stochastic differential equations in order to account for randomness in the system, arising e.g., by the therapy-induced decreasing number of clonogens, which renders a pure deterministic model arguable. The equations are deduced relying on transition probabilities characterizing innovations of the two cancer cell subpopulations, and similarly extended to also account for the evolution of normal tissue. Several therapy approaches are introduced and compared by way of tumor control probability (TCP) and uncomplicated tumor control probability (UTCP). A PDE approach allows to assess the evolution of tumor and normal tissue with respect to time and to cell population densities which can vary continuously in a given set of states. Analytical approximations of solutions to the obtained PDE system are provided as well.

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Verfasserangaben:Julia Kroos, Christian Stinner, Christina Surulescu, Nicolae Surulescu
URN (Permalink):urn:nbn:de:hbz:386-kluedo-54262
Sprache der Veröffentlichung:Englisch
Veröffentlichungsdatum (online):03.12.2018
Jahr der Veröffentlichung:2018
Veröffentlichende Institution:Technische Universität Kaiserslautern
Datum der Publikation (Server):05.12.2018
Fachbereiche / Organisatorische Einheiten:Fachbereich Mathematik
DDC-Sachgruppen:5 Naturwissenschaften und Mathematik / 500 Naturwissenschaften
35-XX PARTIAL DIFFERENTIAL EQUATIONS / 35Kxx Parabolic equations and systems [See also 35Bxx, 35Dxx, 35R30, 35R35, 58J35] / 35K61 Nonlinear initial-boundary value problems for nonlinear parabolic equations
Lizenz (Deutsch):Creative Commons 4.0 - Namensnennung (CC BY 4.0)