## Testrig optimization by block loads: Remodelling of damage as Gaussian functions and their clustering method

- In automotive testrigs we apply load time series to components such that the outcome is as close as possible to some reference data. The testing procedure should in general be less expensive and at the same time take less time for testing. In my thesis, I propose a testrig damage optimization problem (WSDP). This approach improves upon the testrig stress optimization problem (TSOP) used as a state of the art by industry experts. In both (TSOP) and (WSDP), we optimize the load time series for a given testrig configuration. As the name suggests, in (TSOP) the reference data is the stress time series. The detailed behaviour of the stresses as functions of time are sometimes not the most important topic. Instead the damage potential of the stress signals are considered. Since damage is not part of the objectives in the (TSOP) the total damage computed from the optimized load time series is not optimal with respect to the reference damage. Additionally, the load time series obtained is as long as the reference stress time series and the total damage computation needs cycle counting algorithms and Goodmann corrections. The use of cycle counting algorithms makes the computation of damage from load time series non-differentiable. To overcome the issues discussed in the previous paragraph this thesis uses block loads for the load time series. Using of block loads makes the damage differentiable with respect to the load time series. Additionally, in some special cases it is shown that damage is convex when block loads are used and no cycle counting algorithms are required. Using load time series with block loads enables us to use damage in the objective function of the (WSDP). During every iteration of the (WSDP), we have to find the maximum total damage over all plane angles. The first attempt at solving the (WSDP) uses discretization of the interval for plane angle to find the maximum total damage at each iteration. This is shown to give unreliable results and makes maximum total damage function non-differentiable with respect to the plane angle. To overcome this, damage function for a given surface stress tensor due to a block load is remodelled by Gaussian functions. The parameters for the new model are derived. When we model the damage by Gaussian function, the total damage is computed as a sum of Gaussian functions. The plane with the maximum damage is similar to the modes of the Gaussian Mixture Models (GMM), the difference being that the Gaussian functions used in GMM are probability density functions which is not the case in the damage approximation presented in this work. We derive conditions for a single maximum for Gaussian functions, similar to the ones given for the unimodality of GMM by Aprausheva et al. in [1]. By using the conditions for a single maximum we give a clustering algorithm that merges the Gaussian functions in the sum as clusters. Each cluster obtained through clustering is such that it has a single maximum in the absence of other Gaussian functions of the sum. The approximate point of the maximum of each cluster is used as the starting point for a fixed point equation on the original damage function to get the actual maximum total damage at each iteration. We implement the method for the (TSOP) and the two methods (with discretization and with clustering) for (WSDP) on two example problems. The results obtained from the (WSDP) using discretization is shown to be better than the results obtained from the (TSOP). Furthermore we show that, (WSDP) using clustering approach to finding the maximum total damage, takes less number of iterations and is more reliable than using discretization.

Verfasserangaben: | Chhitiz Buchasia |
---|---|

URN (Permalink): | urn:nbn:de:hbz:386-kluedo-40032 |

Betreuer: | Karl-Heinz Küfer |

Dokumentart: | Dissertation |

Sprache der Veröffentlichung: | Englisch |

Veröffentlichungsdatum (online): | 24.02.2015 |

Jahr der Veröffentlichung: | 2014 |

Veröffentlichende Institution: | Technische Universität Kaiserslautern |

Titel verleihende Institution: | Technische Universität Kaiserslautern |

Datum der Annahme der Abschlussarbeit: | 15.05.2014 |

Datum der Publikation (Server): | 24.02.2015 |

Seitenzahl: | V, 166 |

Fachbereiche / Organisatorische Einheiten: | Fachbereich Mathematik |

DDC-Sachgruppen: | 5 Naturwissenschaften und Mathematik / 510 Mathematik |

Lizenz (Deutsch): | Standard gemäß KLUEDO-Leitlinien vom 13.02.2015 |