- search hit 1 of 1

## On analytic semigroups and cosine functions in Banach spaces

- If \(A\) generates a bounded cosine function on a Banach space \(X\) then the negative square root \(B\) of \(A\) generates a holomorphic semigroup, and this semigroup is the conjugate potential transform of the cosine function. This connection is studied in detail, and it is used for a characterization of cosine function generators in terms of growth conditions on the semigroup generated by \(B\). This characterization relies on new results on the inversion of the vector-valued conjugate potential transform.