Nonstationary lterated Tikhonov Regularization
- A convergence rate is established for nonstationary iterated Tikhonov regularization, applied to ill-posed problems involving closed, densely defined linear operators, under general conditions on the iteration parameters. lt is also shown that an order-optimal accuracy is attained when a certain a posteriori stopping rule is used to determine the iteration number.
Author: | Martin Hanke, C.W. Groetsch |
---|---|
URN (permanent link): | urn:nbn:de:hbz:386-kluedo-48628 |
Serie (Series number): | Preprints (rote Reihe) des Fachbereich Mathematik (277) |
Document Type: | Report |
Language of publication: | English |
Publication Date: | 2017/10/16 |
Year of Publication: | 1996 |
Publishing Institute: | Technische Universität Kaiserslautern |
Date of the Publication (Server): | 2017/10/16 |
Number of page: | 14 |
Faculties / Organisational entities: | Fachbereich Mathematik |
DDC-Cassification: | 5 Naturwissenschaften und Mathematik / 510 Mathematik |
Licence (German): |