• search hit 1 of 1
Back to Result List

Directional Analysis of Stationary Point Processes

  • In this thesis we consider the directional analysis of stationary point processes. We focus on three non-parametric methods based on second order analysis which we have defined as Integral method, Ellipsoid method, and Projection method. We present the methods in a general setting and then focus on their application in the 2D and 3D case of a particular type of anisotropy mechanism called geometric anisotropy. We mainly consider regular point patterns motivated by our application to real 3D data coming from glaciology. Note that directional analysis of 3D data is not so prominent in the literature. We compare the performance of the methods, which depends on the relative parameters, in a simulation study both in 2D and 3D. Based on the results we give recommendations on how to choose the methods´ parameters in practice. We apply the directional analysis to the 3D data coming from glaciology, which consist in the locations of air-bubbles in polar ice cores. The aim of this study is to provide information about the deformation rate in the ice and the corresponding thinning of ice layers at different depths. This information is substantial for the glaciologists in order to build ice dating models and consequently to give a correct interpretation of the climate information which can be found by analyzing ice cores. In this thesis we consider data coming from three different ice cores: the Talos Dome core, the EDML core and the Renland core. Motivated by the ice application, we study how isotropic and stationary noise influences the directional analysis. In fact, due to the relaxation of the ice after drilling, noise bubbles can form within the ice samples. In this context we take two classification algorithms into consideration, which aim to classify points in a superposition of a regular isotropic and stationary point process with Poisson noise. We introduce two methods to visualize anisotropy, which are particularly useful in 3D and apply them to the ice data. Finally, we consider the problem of testing anisotropy and the limiting behavior of the geometric anisotropy transform.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Author:Martina Sormani
URN (permanent link):urn:nbn:de:hbz:386-kluedo-57377
Advisor:Claudia Redenbach
Document Type:Doctoral Thesis
Language of publication:English
Publication Date:2019/09/10
Year of Publication:2019
Publishing Institute:Technische Universität Kaiserslautern
Granting Institute:Technische Universität Kaiserslautern
Acceptance Date of the Thesis:2019/06/11
Date of the Publication (Server):2019/09/11
Number of page:IX, 131
Faculties / Organisational entities:Fachbereich Mathematik
DDC-Cassification:5 Naturwissenschaften und Mathematik / 510 Mathematik
Licence (German):Creative Commons 4.0 - Namensnennung, nicht kommerziell, keine Bearbeitung (CC BY-NC-ND 4.0)