• search hit 1 of 1
Back to Result List

Weighted k-cardinality trees

  • We consider the k -CARD TREE problem, i.e., the problem of finding in a given undirected graph G a subtree with k edges, having minimum weight. Applications of this problem arise in oil-field leasing and facility layout. While the general problem is shown to be strongly NP hard, it can be solved in polynomial time if G is itself a tree. We give an integer programming formulation of k-CARD TREE, and an efficient exact separation routine for a set of generalized subtour elimination constraints. The polyhedral structure of the convex huLl of the integer solutions is studied.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Author:Matteo Fischetti, Horst W. Hamacher, Kurt Jörnsten, Francesco Maffioli
URN (permanent link):urn:nbn:de:hbz:386-kluedo-48838
Serie (Series number):Preprints (rote Reihe) des Fachbereich Mathematik (228)
Document Type:Report
Language of publication:English
Publication Date:2017/10/19
Year of Publication:1992
Publishing Institute:Technische Universität Kaiserslautern
Date of the Publication (Server):2017/10/19
Number of page:26
Faculties / Organisational entities:Fachbereich Mathematik
DDC-Cassification:5 Naturwissenschaften und Mathematik / 510 Mathematik
Licence (German):Creative Commons 4.0 - Namensnennung, nicht kommerziell, keine Bearbeitung (CC BY-NC-ND 4.0)