UNIVERSITÄTSBIBLIOTHEK
Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 26 von 1230
Zurück zur Trefferliste

Stochastic Modeling of Multiphase Materials Based on Digital Image Data

  • Multiphase materials combine properties of several materials, which makes them interesting for high-performing components. This thesis considers a certain set of multiphase materials, namely silicon-carbide (SiC) particle-reinforced aluminium (Al) metal matrix composites and their modelling based on stochastic geometry models. Stochastic modelling can be used for the generation of virtual material samples: Once we have fitted a model to the material statistics, we can obtain independent three-dimensional “samples” of the material under investigation without the need of any actual imaging. Additionally, by changing the model parameters, we can easily simulate a new material composition. The materials under investigation have a rather complicated microstructure, as the system of SiC particles has many degrees of freedom: Size, shape, orientation and spatial distribution. Based on FIB-SEM images, that yield three-dimensional image data, we extract the SiC particle structure using methods of image analysis. Then we model the SiC particles by anisotropically rescaled cells of a random Laguerre tessellation that was fitted to the shapes of isotropically rescaled particles. We fit a log-normal distribution for the volume distribution of the SiC particles. Additionally, we propose models for the Al grain structure and the Aluminium-Copper (\({Al}_2{Cu}\)) precipitations occurring on the grain boundaries and on SiC-Al phase boundaries. Finally, we show how we can estimate the parameters of the volume-distribution based on two-dimensional SEM images. This estimation is applied to two samples with different mean SiC particle diameters and to a random section through the model. The stereological estimations are within acceptable agreement with the parameters estimated from three-dimensional image data as well as with the parameters of the model.
Metadaten
Verfasserangaben:Katharina Losch
URN (Permalink):urn:nbn:de:hbz:386-kluedo-53241
Betreuer:Claudia Redenbach
Dokumentart:Dissertation
Sprache der Veröffentlichung:Englisch
Veröffentlichungsdatum (online):06.07.2018
Jahr der Veröffentlichung:2018
Veröffentlichende Institution:Technische Universität Kaiserslautern
Titel verleihende Institution:Technische Universität Kaiserslautern
Datum der Annahme der Abschlussarbeit:17.07.2017
Datum der Publikation (Server):06.07.2018
Seitenzahl:X, 107
Fachbereiche / Organisatorische Einheiten:Fachbereich Mathematik
DDC-Sachgruppen:5 Naturwissenschaften und Mathematik / 510 Mathematik
MSC-Klassifikation (Mathematik):62-XX STATISTICS
Lizenz (Deutsch):Creative Commons 4.0 - Namensnennung, nicht kommerziell, keine Bearbeitung (CC BY-NC-ND 4.0)