• search hit 1 of 1
Back to Result List

Construction of a Mittag-Leffler Analysis and its Applications

  • Motivated by the results of infinite dimensional Gaussian analysis and especially white noise analysis, we construct a Mittag-Leffler analysis. This is an infinite dimensional analysis with respect to non-Gaussian measures of Mittag-Leffler type which we call Mittag-Leffler measures. Our results indicate that the Wick ordered polynomials, which play a key role in Gaussian analysis, cannot be generalized to this non-Gaussian case. We provide evidence that a system of biorthogonal polynomials, called generalized Appell system, is applicable to the Mittag-Leffler measures, instead of using Wick ordered polynomials. With the help of an Appell system, we introduce a test function and a distribution space. Furthermore we give characterizations of the distribution space and we characterize the weak integrable functions and the convergent sequences within the distribution space. We construct Donsker's delta in a non-Gaussian setting as an application. In the second part, we develop a grey noise analysis. This is a special application of the Mittag-Leffler analysis. In this framework, we introduce generalized grey Brownian motion and prove differentiability in a distributional sense and the existence of generalized grey Brownian motion local times. Grey noise analysis is then applied to the time-fractional heat equation and the time-fractional Schrödinger equation. We prove a generalization of the fractional Feynman-Kac formula for distributional initial values. In this way, we find a Green's function for the time-fractional heat equation which coincides with the solutions given in the literature.

Download full text files

Export metadata

Author:Florian Jahnert
URN (permanent link):urn:nbn:de:hbz:386-kluedo-41576
Advisor:Martin Grothaus
Document Type:Doctoral Thesis
Language of publication:English
Publication Date:2015/08/17
Year of Publication:2015
Publishing Institute:Technische Universität Kaiserslautern
Granting Institute:Technische Universität Kaiserslautern
Acceptance Date of the Thesis:2015/07/24
Date of the Publication (Server):2015/08/18
Number of page:VI, 130
Faculties / Organisational entities:Fachbereich Mathematik
DDC-Cassification:5 Naturwissenschaften und Mathematik / 510 Mathematik
Licence (German):Standard gemäß KLUEDO-Leitlinien vom 30.07.2015