• search hit 46 of 525
Back to Result List

How to Prove Higher Order Theorems in First Order Logic

  • In this paper we are interested in using a firstorder theorem prover to prove theorems thatare formulated in some higher order logic. Tothis end we present translations of higher or-der logics into first order logic with flat sortsand equality and give a sufficient criterion forthe soundness of these translations. In addi-tion translations are introduced that are soundand complete with respect to L. Henkin's gen-eral model semantics. Our higher order logicsare based on a restricted type structure in thesense of A. Church, they have typed functionsymbols and predicate symbols, but no sorts.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Author:Manfred Kerber
URN (permanent link):urn:nbn:de:hbz:386-kluedo-3353
Serie (Series number):SEKI Report (90,19)
Document Type:Article
Language of publication:English
Year of Completion:1999
Year of Publication:1999
Publishing Institute:Technische Universität Kaiserslautern
Date of the Publication (Server):2000/04/03
Tag:completeness; higher order logic; morphism; second order logic; soundness; translation
Faculties / Organisational entities:Fachbereich Informatik
DDC-Cassification:0 Allgemeines, Informatik, Informationswissenschaft / 004 Informatik
Licence (German):Standard gemäß KLUEDO-Leitlinien vor dem 27.05.2011