• search hit 1 of 1
Back to Result List

Tools and Methods to Support Opportunistic Human Activity Recognition

  • Today’s pervasive availability of computing devices enabled with wireless communication and location- or inertial sensing capabilities is unprecedented. The number of smartphones sold worldwide are still growing and increasing numbers of sensor enabled accessories are available which a user can wear in the shoe or at the wrist for fitness tracking, or just temporarily puts on to measure vital signs. Despite this availability of computing and sensing hardware the merit of application seems rather limited regarding the full potential of information inherent to such senor deployments. Most applications build upon a vertical design which encloses a narrowly defined sensor setup and algorithms specifically tailored to suit the application’s purpose. Successful technologies, however, such as the OSI model, which serves as base for internet communication, have used a horizontal design that allows high level communication protocols to be run independently from the actual lower-level protocols and physical medium access. This thesis contributes to a more horizontal design of human activity recognition systems at two stages. First, it introduces an integrated toolchain to facilitate the entire process of building activity recognition systems and to foster sharing and reusing of individual components. At a second stage, a novel method for automatic integration of new sensors to increase a system’s performance is presented and discussed in detail. The integrated toolchain is built around an efficient toolbox of parametrizable components for interfacing sensor hardware, synchronization and arrangement of data streams, filtering and extraction of features, classification of feature vectors, and interfacing output devices and applications. The toolbox emerged as open-source project through several research projects and is actively used by research groups. Furthermore, the toolchain supports recording, monitoring, annotation, and sharing of large multi-modal data sets for activity recognition through a set of integrated software tools and a web-enabled database. The method for automatically integrating a new sensor into an existing system is, at its core, a variation of well-established principles of semi-supervised learning: (1) unsupervised clustering to discover structure in data, (2) assumption that cluster membership is correlated with class membership, and (3) obtaining at a small number of labeled data points for each cluster, from which the cluster labels are inferred. In most semi-supervised approaches, however, the labels are the ground truth provided by the user. By contrast, the approach presented in this thesis uses a classifier trained on an N-dimensional feature space (old classifier) to provide labels for a few points in an (N+1)-dimensional feature space which are used to generate a new, (N+1)-dimensional classifier. The different factors that make a distribution difficult to handle are discussed, a detailed description of heuristics designed to mitigate the influences of such factors is provided, and a detailed evaluation on a set of over 3000 sensor combinations from 3 multi-user experiments that have been used by a variety of previous studies of different activity recognition methods is presented.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Author:David Bannach
URN (permanent link):urn:nbn:de:hbz:386-kluedo-41926
Advisor:Paul Lukowicz, Bernhard Sick
Document Type:Doctoral Thesis
Language of publication:English
Publication Date:2015/10/08
Year of Publication:2015
Publishing Institute:Technische Universität Kaiserslautern
Granting Institute:Technische Universität Kaiserslautern
Acceptance Date of the Thesis:2015/03/06
Date of the Publication (Server):2015/10/08
Number of page:X, 155
Faculties / Organisational entities:Fachbereich Informatik
DDC-Cassification:0 Allgemeines, Informatik, Informationswissenschaft / 004 Informatik
Licence (German):Standard gemäß KLUEDO-Leitlinien vom 30.07.2015